Citation
Sultan Aljibori, Hakim S.
(2004)
Study On Optimization Of Composite Tubular Energy Absorption System.
Masters thesis, Universiti Putra Malaysia.
Abstract
A four-phase program to improve the specific energy absorbed by axially crushed
composite collapsible tubular energy absorber devices was undertaken. In the first
phase, the effects of trigged tube wall on the crushing behaviour were investigated.
At this stage, triggered tubes were fabricated and crushed. The second phase is
aimed at obtaining the best position for the triggered wall. The third phase focuses
on the effects of material sizing in order to understand the influence of triggered
wall Iength on the responses of composite circular tubes to the axial crushing load.
The results from these three phases lead to the fourth phase. The objective of the 4t"
phases was to optimise the shape geometry of the cross-section area to further
improve tube energy absorption capability. The tubes were manufactured from
woven roving glasslepoxy fabric and had the same lay-up providing a common
laminate for comparison. The failure modes were observed and the specific
sustained crushing loads were determined and compared against non-optimized tubes of the same lay-up. The importance of differentiating between initiation
energy and propagation energy is shown, and a new parameter (energy capability
index (ECI)) is proposed, as a useful measure for comparing crush behaviour of
composite structures. The experimental results demonstrated strong potential
benefits of optimizing the material distribution. The sizing and shape optimization of
composite collapsible tubes exhibited a pronounced effect on their capability to
absorb high specific energy under axial compressive load.
For the effect of triggering it was that tubes (TN) observed to experience
catastrophic failure mode during the post crush stage also displayed very poor
energy absorption. Triggering a part of tube wall was very efficient in improving the
energy absorption capacity of circular composite tubes. Accordingly tubes with
triggered wall (T-tubes) exhibited highest energy absorption capacity compared with
non-triggered tubes. They also experience stable post-crush region of loaddisplacement
curves, which leads to high crashworthiness performance. It is also
evident from the experimental results that change in the triggered wall aspect ratio
significantly affected the energy absorption capability of tube with middle triggered
wall (TM-tubes). Distinct differences were observed between the different aspect
ratio, where TM tubes (i.e. tubes with triggered wall aspect ratio of 0.28) exhibited
the highest energy absorption capacity. Different failure modes were observed for
different triggered wall length ratios (Lt,/H). For the core tubes (TMC-), was
observed that core presence markedly improved the energy absorption capacity of
composite circular tubes. Among TMC- tubes, TMC3 tubes (i.e. tubes with core
thickness of 3.35mm) displayed highest energy absorption capacity.
Download File
Additional Metadata
Actions (login required)
|
View Item |