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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirements for the degree of Master of Science 

STUDY ON OPTIMIZATION OF COMPOSITE TUBULAR ENERGY 
ABSORPTION SYSTEM 

BY 

HAKIM S. SULTAN ALJIBORI 

June 2004 

Chairman: Elsadig Mahdi Ahmad, Ph.D. 

Faculty : Engineering 

A four-phase program to improve the specific energy absorbed by axially crushed 

composite collapsible tubular energy absorber devices was undertaken. In the first 

phase, the effects of trigged tube wall on the crushing behaviour were investigated. 

At this stage, triggered tubes were fabricated and crushed. The second phase is 

aimed at obtaining the best position for the triggered wall. The third phase focuses 

on the effects of material sizing in order to understand the influence of triggered 

wall Iength on the responses of composite circular tubes to the axial crushing load. 

The results from these three phases lead to the fourth phase. The objective of the 4t" 

phases was to optimise the shape geometry of the cross-section area to further 

improve tube energy absorption capability. The tubes were manufactured from 

woven roving glasslepoxy fabric and had the same lay-up providing a common 

laminate for comparison. The failure modes were observed and the specific 

sustained crushing loads were determined and compared against non-optimized 
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tubes of the same lay-up. The importance of differentiating between initiation 

energy and propagation energy is shown, and a new parameter (energy capability 

index (ECI)) is proposed, as a useful measure for comparing crush behaviour of 

composite structures. The experimental results demonstrated strong potential 

benefits of optimizing the material distribution. The sizing and shape optimization of 

composite collapsible tubes exhibited a pronounced effect on their capability to 

absorb high specific energy under axial compressive load. 

For the effect of triggering it was that tubes (TN) observed to experience 

catastrophic failure mode during the post crush stage also displayed very poor 

energy absorption. Triggering a part of tube wall was very efficient in improving the 

energy absorption capacity of circular composite tubes. Accordingly tubes with 

triggered wall (T-tubes) exhibited highest energy absorption capacity compared with 

non-triggered tubes. They also experience stable post-crush region of load- 

displacement curves, which leads to high crashworthiness performance. It is also 

evident from the experimental results that change in the triggered wall aspect ratio 

significantly affected the energy absorption capability of tube with middle triggered 

wall (TM-tubes). Distinct differences were observed between the different aspect 

ratio, where TM tubes (i.e. tubes with triggered wall aspect ratio of 0.28) exhibited 

the highest energy absorption capacity. Different failure modes were observed for 

different triggered wall length ratios (Lt,/H). For the core tubes (TMC-), was 

observed that core presence markedly improved the energy absorption capacity of 

composite circular tubes. Among TMC- tubes, TMC3 tubes (i.e. tubes with core 

thickness of 3.35mm) displayed highest energy absorption capacity. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

KAJIAN MEGENAI PENGOPTIMUMAN SISTEM PENYERAPAN 
TENAGA TUBULAR KOMPOSIT 

Oleh 

HAKIM S. SULTAN ALJLBORI 

Jun 2004 

Pengerusi: Elsadig Mahdi Ahmad, Ph.D. 

Fakulti : Kejuruteraan 

Suatu program empat fasa bagi meningkatkan tenaga tentu yang diserap oleh peranti 

penyerap tenaga bagi komposit boleh-musnah tiub yang dihancurkan secara 

menegak telah dijalankan. Dalarn fasa pertama, kesan dinding tiub berpicu ke atas 

perlakuan hancur telah dikaji. Untuk ini, tiub berpicu dan tanpa-picu telah difabrikat 

dan dihancurkan. Fasa yang kedua bertujuan untuk mendapatkan posisi terbaik bagi 

dinding berpicu tersebut. Fasa ketiga memfokuskan kepada kesan pensaizan bahan, 

untuk memahami pengaruh panjang dinding berpicu ke atas tindakbalas tiub-tiub 

komposit membulat kepada beban paksi penghancuran. Keputusan yang dicapai oleh 

ketiga-tiga fasa ini menyumbang kepada fasa yang keempat, yang inana objektifnya 

adalah untuk mengoptimuinkan bentuk geometri bagi luas keratan rentas tiub untuk 

lebih peningkatan dalam kebolehserapan tenaga oleh tiub. Tiub-tiub ini diperbuat 

daripada jalinan pintal kacalfabrik epoksi dan mempunyai rekabentuk yang sama, ini 

menyediakan pelapik biasa untuk perbandingan.Mod-mod kegagalan diperliatikan, 
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dan beban penghancuran berterusan tertentu telah ditentukan dan dibandingkan 

dengan tiub-tiub tak-teroptimum yang sama rekabentuknya. Kepentingan untuk 

membezakan di antara tenaga inisiasi dan tenaga propagasi ditunjukkan, dan satu 

parameter baru (indeks kebolehan tenaga(EC1)) telah dicadangkan sebagai 

pengukuran yang berguna untuk membandingkan perlakuan hancur struktur-struktur 

komposit. Keputusan-keputusan eksperimen menunjukkan manfaat yang mungkin 

diperoleh dalam mengoptimumkan taburan bahan. Pensaizan dan pengoptimuman 

bentuk tiub komposit boleh-musnah menunjukkan kesan yang ketara dalam 

kebolehannya untuk menyerap tenaga tentu yang tinggi di bawah beban mampatan 

paksi . 

Bagi kesan penamballan picu, adalah diperhatikan bahawa tiub-tiub dengan dinding 

tanpa-picu (TN) mengalami mod kegagalan katastrofik semasa tahap pasca-hancur, 

di samping menunjukkan kapasiti penyerapan tenaga yang amat rendah, 

Penambahan picu ke atas sebahagian daripada dinding tiub didapati amat berkesan 

dalam meningkatkan kapasiti penyerapan tenaga bagi tiub-tiub komposit membulat. 

Dengan itu, tiub-tiub dengan dinding yang berpicu (T-tubes) menunjukkan kapasiti 

penyerapan tenaga yang amat tinggi jika dibandingkan dengan tiub tanpa-picu. Ia 

juga mengalami rantau pasca-hancur yang stabil dalam lengkuk beban-peralihan, 

yang membawa kepada prestasi kebolehtahanan-musnah yang tinggi. Daripada 

eksperimen juga dapat dibuktikan bahawa pertukaran dalarn nisbah aspek dinding 

berpicu memberi kesan langsung kepada kebolehan penyerapan tenaga bagi TM- 

tubes. Beberapa perbezaan ketara telah dikenalpasti di antara nisbah aspek yang 

berlainan, di amna tiub TM (iaitu tiub dengan nisbah aspek dinding berpicu 
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sebanyak 0.28) menunjukkan kapasiti penyerapan tenaga yang tertinggi. Mod-mod 

kegagalan yang berlainan telah diperhatikan untuk nisbah Lt,/H yang berlainan. 

Bagi tiub-tiub teras (TMC-), adalah didapati bahawa kehadiran teras telah 

meningkatkan kapasiti penyerapan tenaga untuk tiub-tiub komposit membulat. Di 

antara tiub-tiub TMC-, tiub TMC3 (iaitu tiub yang mempunyai ketebalan teras 

sebanyak 3.35mm) menunjukkan kapasiti penyerapan tenaga yang amat tinggi. 
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CHAPTER 1 

INTRODUCTION 

In recent years there is an increasing demand in the use of composite materials for 

the automotive, aerospace and rail industry. The automotive and aerospace 

applications over the past quarter-century have been primarily in special areas such 

as energy absorber devices. As the automotive manufacturers have to take 

environmental issues into consideration, the composite space-frame concept has 

become more and more attractive in the design of vehicles. When using composite 

in the body structure of a vehicle, considerable weight reductions can be achieved 

compared to conventional isotropic structures, which leads to reduced fuel 

consumption and consequently lower carbon dioxide emissions. 

The high efficiency of any energy absorber device may be defined as its ability to 

decelerate smoothly the occupant compartment to the rest within the allowable 

limit [I]. It is well-known that responses of axially crushed non-trigger tubes (i.e. 

tube with constant thickness and squared ends) are characterized by recording very 

high resistances till reach their full load carrying capacity after which definite 

different degrees of unstable behaviours take place [2]. Therefore, it is strongly 

believed that for core-less tubular energy absorber devices stable load-deformation 

curve could only be obtained by steering the failure initiation to occur in a designed 
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region along the shell meridional direction. In that manner, two approaches based 

on material and geometry properties have been suggested to avoid the Euler- 

buckling failure mechanism or any mechanism leads to catastrophic failure. These 

approaches can be classified in two categories. The first Category based on material 

properties employs core thin-walled structures filled with crushable medium (i.e. 

synthesised or natural cellular materials filler). It has been extensively shown that 

tubes with filled cores achieved high and stable load carrying capacity along the 

gross deformation with very high total energy absorbed and very specific energy 

absorption compared with the core-less tubes [3]. This Category is being criticised 

because of apparent weight increasing, despite the specific filler density. More over 

researchers in composite structures introduces hybrid structures using different 

fibres types 141. The hybridisation relatively improved the load-carrying capacity 

without a profound enhancement in the specific energy absorbed. A designed 

beneficial imperfection in the structure introduced by Hui [5] was introduced to 

enhance the energy absorption. This method resulted in a combination of instable 

and stable failure mode. The second Category based on geometry properties are 

also categorized in many groups. According to Farley [6] and Farley & Jones [7] 

reported that energy absorption capability is a non-linear function of inside 

diameter to wall thickness ratio (Dlt) for tubular specimens. They stated that 

specific energy absorption was found to fall as Dlt increased. Mamalis, et a1 [8] and 

Mahdi, et al. [9] reported that the crushing behaviour is dominated by increasing 

the cone vertex angle. 
© C

OPYRIG
HT U

PM



1.1 Problem Statement 

The main objective to manufacturers and materials community is to produce 

vehicles with lightweight; therefore, using composite material for automotive and 

aerospace industry it is very attractive to be the main materials for many car 

components. One of these components is crash energy devices. Energy absorbs 

devices should be designed to meet the requirements and standards for the 

protections of the occupants or passengers in vehicles accident. However, 

behaviour of the composite energy absorber devices is often unstable in absorbing 

crash event and most probably leads to catastrophic failure mechanism. This 

instability is one of the more critical problems in using fibre composites for crash 

energy management. This is the main factor behind this present project. 

Accordingly this project introduces many aspects to improve the energy absorption 

capability of composite circular tubes under quasi-static axial compressive load. 

1.2 Objectives 

The purpose of this study is to optirnise the structure of composite tubular energy 

absorber device in order to maximize its specific energy absorption capability. The 

only known quantities in this problem are the loading, support conditions and the 

structure domain. The detail objectives of this study can be summarised as follows: 

1. To study the effect of triggering on the crushing behaviour of composite 
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circular tubes. 

2. To examine the effect of the triggered wall position on the energy 

absorption of composite circular tubes. 

3. To determine the effect of the triggered wall aspect ratio on the energy 

absorption of composite circular tubes. 

4. To examine the effect of material distribution and shape optimisation on 

the energy absorption of composite circular tubes. 

1.2 Significance of the Study 

This work is important because of the following: 

1. Any generic technology or structural system in the various engineering 

fields offers safety and provide enhanced levels of protection ought to be 

of considerable interest, that composite materials based structures is one 

such technology is not in doubt. 

2. The efficient use of composite tubes as energy absorber depends on the 

understanding of their crushing behaviour. 

3. The results of this study and the produced data can be helpful in the design 

stage of energy absorber elements made from composite material. 
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