Citation
Hasan, Mohammad Khatim
(2008)
Fast Finite Difference Time Domain Algorithms for Solving Antenna Application Problem.
Doctoral thesis, Universiti Putra Malaysia.
Abstract
This thesis describes the implementations of new parallel and sequential algorithms
for electromagnetic wave propagation from a monopole antenna. Existing
method, known as FDTD needs a very long processing time to solve this problem.
The objective of the thesis is to develop new sequential and parallel algorithms
that are faster than the standard Finite Difference Time Domain method. In this
thesis, a SMP machine, the Sun Fire V1280 using six existing processors is used to
solve 1D and 2D free space Maxwell equations with perfectly conducting boundary
and absorbing boundary conditions. Complexity reduction approach concept
is used to develop these algorithms. This approach split the solution domain into
1
3 and 2
3 compartments in 1D case and 1
9 and 8
9 compartments in 2D cases. Only
1
3 and 1
9 parts of the solution domain are solved in the main looping construct for
problem in 1D and 2D, while the remaining points are solved outside the loop. The solutions to both parts are discussed in details in this thesis. These new parallel
and sequential finite difference time domain (FDTD) algorithms yield from O(h2),
ordinary O(h4) and weighted average O(h4) centered difference discretization using
direct-domain and temporary-domain are used to solve problems mentioned
above. In parallel implementation, techniques such as static scheduling, data
decomposition and load balancing is used. Based on experimental results and
complexity analysis, these new sequential and parallel algorithms are compared
with the standard sequential and parallel FDTD algorithms, respectively. Results
show that these new sequential and parallel algorithms run faster than the
standard sequential and parallel FDTD algorithms. Beside that, formulation of
a new higher accuracy second order method, which is called improved high speed
low order finite difference time domain (IHSLO-FDTD) with direct-domain and
temporary-domain are also proposed to solve the same problem are also described.
Results show that, the IHSLO-FDTD with direct-domain and temporary-domain
approaches are more efficient and economical. In general, almost all new proposed
methods are more economical and run faster (except the Weighted Average High
Speed High Order Finite Difference Time Domain (WAHSHO-FDTD) in directdomain
and temporary-domain for 1D case) compared to the standard FDTD
method for 1D and 2D case especially for IHSLO-FDTD.
Download File
Additional Metadata
Actions (login required)
|
View Item |