Citation
Abstract
In the present work, Cyrtopleura costata (Angel Wing Shell) is used for the first time to synthesis of CaO. The produced CaO was utilized as a catalyst for biodiesel production from microalgae Nannochloropsis oculata oil. The Angel Wing Shell (AWS) was calcined at 800 °C and 900 °C for 2 h to convert CaCO3 to activate metal oxide phase. The synthesized catalysts were characterized by using Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Temperature programmed desorption of CO2 (CO2-TPD), BET surface area and Scanning electron microscopy (SEM) analysis. The calcined Angel Wing Shell at 900 °C (CAWS 900) was chosen as the best catalyst due to its high basicity and surface area. This also corresponded to optimization condition where, CAWS 900 showed highest FAME yield (84.11%) at oil to methanol molar ratio 1:150 and catalyst loading of 9 wt.% in 1 h reaction time. The CAWS 900 catalyst also can be reused more than three times with FAME yield greater than 65%. Overall, AWS appears to be an acceptable solid catalyst to convert microalgae oil to biodiesel.
Download File
Official URL or Download Paper: https://www.sciencedirect.com/science/article/abs/...
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Science Institute of Advanced Technology |
DOI Number: | https://doi.org/10.1016/j.enconman.2015.05.075 |
Publisher: | Elsevier |
Keywords: | Calcium oxide; Waste shell; Microalgae; Biodiesel; Transesterification |
Depositing User: | Ms. Nuraida Ibrahim |
Date Deposited: | 08 Apr 2021 07:13 |
Last Modified: | 08 Apr 2021 07:13 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1016/j.enconman.2015.05.075 |
URI: | http://psasir.upm.edu.my/id/eprint/45367 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |