Citation
Abstract
Smart city infrastructure has a significant impact on improving the quality of humans life. However, a substantial increase in the urban population from the last few years poses challenges related to resource management, safety, and security. To ensure the safety and security in the smart city environment, this paper presents a novel approach by empowering the authorities to better visualize the threats, by identifying and predicting the highly-reported crime zones in the smart city. To this end, it first investigates the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) to detect the hot-spots that have a higher risk of crime occurrence. Second, for crime prediction, Seasonal Auto-Regressive Integrated Moving Average (SARIMA) is exploited in each dense crime region to predict the number of crime incidents in the future with spatial and temporal information. The proposed HDBSCAN and SARIMA based crime prediction model is evaluated on ten years of crime data (2008-2017) for New York City (NYC). The accuracy of the model is measured by considering different time scenarios such as the year-wise, (i.e., for each year), and for the total considered duration of ten years using an 80:20 ratio. The 80% of data was used for training and 20% for testing. The proposed approach outperforms with an average Mean Absolute Error (MAE) of 11.47 as compared to the highest scoring DBSCAN based method with MAE 27.03.
Download File
Full text not available from this repository.
Official URL or Download Paper: https://ieeexplore.ieee.org/document/9383227
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Computer Science and Information Technology |
DOI Number: | https://doi.org/10.1109/ACCESS.2021.3068306 |
Publisher: | Institute of Electrical and Electronics Engineers |
Keywords: | Prediction algorithms; Smart cities; Law enforcement; Predictive models; Safety; Resource management; Market research |
Depositing User: | Ms. Che Wa Zakaria |
Date Deposited: | 09 Jan 2023 03:19 |
Last Modified: | 09 Jan 2023 03:19 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1109/ACCESS.2021.3068306 |
URI: | http://psasir.upm.edu.my/id/eprint/95123 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |