Citation
Abstract
The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.
Download File
Full text not available from this repository.
Official URL or Download Paper: https://www.mdpi.com/2073-4360/13/3/404
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Biotechnology and Biomolecular Sciences Faculty of Science Institute of Tropical Forestry and Forest Products |
DOI Number: | https://doi.org/10.3390/polym13030404 |
Publisher: | MDPI |
Keywords: | Ultra-high molecular weight polyethylene; Cellulose nanofiber; Bionanocomposite; Meltblending; Ethanol mixing |
Depositing User: | Ms. Nur Faseha Mohd Kadim |
Date Deposited: | 18 May 2023 08:43 |
Last Modified: | 18 May 2023 08:43 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.3390/polym13030404 |
URI: | http://psasir.upm.edu.my/id/eprint/94142 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |