UPM Institutional Repository

Wavelength dependent graphene oxide-based optical microfiber sensor for ammonia gas


Citation

Girei, Saad Hayatu and Alkhabet, Mohammed Majeed and Mustapha Kamil, Yasmin and Lim, Hong Ngee and Mahdi, Mohd Adzir and Yaacob, Mohd Hanif (2021) Wavelength dependent graphene oxide-based optical microfiber sensor for ammonia gas. Sensors, 21 (2). pp. 1-11. ISSN 1424-8220

Abstract

Ammonia detection in ambient air is critical, given its implication on the environment and human health. In this work, an optical fiber tapered to a 20 µm diameter and coated with graphene oxide was developed for absorbance response monitoring of ammonia at visible (500–700 nm) and near-infrared wavelength regions (700–900 nm). The morphology, surface characteristics, and chemical composition of the graphene oxide samples were confirmed by a field emission scanning electron microscope, an atomic force microscope, X-ray diffraction, and an energy dispersion X-ray. The sensing performance of the graphene oxide-coated optical microfiber sensor towards ammonia at room temperature revealed better absorbance response at the near-infrared wavelength region compared to the visible region. The sensitivity, response and recovery times at the near-infrared wavelength region were 61.78 AU/%, 385 s, and 288 s, respectively. The sensitivity, response and recovery times at the visible wavelength region were 26.99 AU/%, 497 s, and 192 s, respectively. The selectivity of the sensor towards ammonia was affirmed with no response towards other gases.


Download File

[img] Text
93573.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB)
Official URL or Download Paper: https://www.mdpi.com/1424-8220/21/2/556

Additional Metadata

Item Type: Article
Divisions: Faculty of Science
Publisher: MDPI
Keywords: Optical fiber sensor; Ammonia; Graphene oxide; Absorbance
Depositing User: Mohamad Jefri Mohamed Fauzi
Date Deposited: 25 Jun 2025 06:40
Last Modified: 25 Jun 2025 06:40
URI: http://psasir.upm.edu.my/id/eprint/93573
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item