Citation
Hamid, Huda Yahia
(2012)
Morphological and molecular changes in embryo-maternal interactions in a rat model at optimal and elevated environmental temperatures.
Doctoral thesis, Universiti Putra Malaysia.
Abstract
Early embryonic development, successful implantation, optimal fetal and placental
development, and maintenance of a pregnancy are critically dependent on intact
embryo-maternal interactions. Today, assisted reproductive technology (ART) is
widely used to overcome some causes of infertility; however, the success rate
remains low as a result of failures in communication between the transferred embryo
and the endometrium. Failure in embryo-maternal communication is responsible for
reproductive wastage, resulting in enormous economic loss. The mechanism that
regulates embryo-maternal interaction has remained elusive and is not well
understood. A better understanding of early embryo-maternal communication and the
identification of the external factors that could interfere with embryo-maternal
crosstalk will improve reproductive success in both humans and animals. The present
study focuses on the maternal signals, which are responsible for two-thirds of
pregnancy losses. Thus, the main objectives of this study were to define the morphological and molecular changes that occur in the maternal tissue in response to
the presence of the embryo and to determine the effects of elevated ambient
temperatures on the morphological and molecular responses of maternal tissue to
embryonic signals.
In the present study, implantation time was determined using blue dye injection (1%
Chicago Sky Blue 6B). A radioimmunoassay (RIA) was used to estimate the plasma
estradiol and progesterone levels during peri-implantation. Morphological changes in
the rat oviduct and uterus during early pregnancy were examined under light and
electron microscopes. Localization of transforming growth factor β1 (TGFβ1),
vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF),
and their receptors TGFβR1, VEGFR2 (Flk-1), FGFR1 (Flg) in the oviduct and
uterus was determined by immunohistochemistry. TGF β1, VEGF, and bFGF gene
expression levels in the rat uterus were examined by real-time quantitative RT-PCR.
The effects of elevated ambient temperatures on implantation time, number of
implantation sites, plasma estradiol and progesterone concentrations, morphological
changes, and the expression levels of TGFβ1, bFGF, and VEGF in the uterus during
peri-implantation were also examined. Further, the effects of exposure to elevated
temperatures at different stages of pregnancy on gestation length, litter size, neonatal
deaths, sex ratio, birth weight, and offspring growth were also determined.
In the present study, implantation was initiated on day 5 and established by day 7 of
pregnancy in the rats kept under optimal temperatures (23±1°C), while the rats
exposed to elevated temperatures (33±2°C) exhibited delayed implantation and a reduced number of implantation sites. Moreover, the exposure to elevated
temperatures resulted in changes in the patterns of plasma progesterone and estradiol
levels during peri-implantation.
Exposure to elevated ambient temperatures during early pregnancy resulted in
prolonged gestation, reduced litter size, increased neonatal death, and a sex ratio
biased toward males. Moreover, elevated temperatures adversely affected the birth
weight and growth of offspring. Exposure to elevated ambient temperatures during
the pre- and peri-implantation periods had stronger adverse effects on reproductive
outcomes and offspring growth than post-implantation exposure.
Rats maintained under optimal conditions exhibited many morphological changes in
the oviduct and uterus during early pregnancy. In the oviduct, the secretory cells
were predominant during the first 4 days of pregnancy. On days 5 through 8 of
pregnancy, however, the ciliated cells were predominant. In the uterus, extensive
infiltration of leukocytes was observed in the endometrium during pre-implantation,
whereas during implantation, the number of leukocytes decreased. Additionally,
considerable changes occurred in the apical plasma membrane of the uterine
epithelial cells. Such changes included changes in the length and density of the
microvilli, flattening of the uterine epithelial cells, loss of the small secretory
droplets seen near the epithelial cells, and the appearance of cytoplasmic protrusions
(pinopods). The uterine luminal epithelial cells gradually lost their microvilli and
became very flat. Pinopods were observed at the apical surface as early as day 2 of
pregnancy. The incidence of pinopods increased gradually up to day 5 of pregnancy,
when the pinopods became abundant and appeared in doughnut shaped.In rats exposed to elevated ambient temperatures, there was a reduced incidence of
pinopods on day 5 compared to the rats maintained under optimal temperatures. On
day 6 of pregnancy, the rats exposed to elevated temperatures did not show flattening
of the apical membrane.
Immunohistochemistry showed that TGFβ1, TGFβR1, VEGF, VEGFR2 (Flk-1),
bFGF, and FGFR1 (Flg) were expressed in both the oviduct and uterus throughout the
first 8 days of pregnancy; however, the distribution and intensity of immunostaining
for each protein varied depending on the day of pregnancy. In the oviduct, high
immunoreactivities of these growth factors and their receptors were observed while the
embryo was present in the oviduct. In the uterus, TGFβ1, TGFβR1, VEGF, Flk-1,
bFGF, and Flg were detected in the endometrium, i.e., in the epithelial and stromal
cells.
Both immunohistochemical analysis and real time RT-qPCR revealed that TGFβ1,
VEGF, and bFGF were found in the uterus at relatively lower levels during preimplantation
but that their expression levels increased dramatically during periimplantation.
Expression of TGFβ1 increased significantly on day 5 (8.72 ± 1.20 - fold
increase versus day 0, P < 0.001) and day 5.5 (13.22 ± 1.80 - fold increase versus day
0, P < 0.001). A dramatic increase in TGFβ1 expression was detected on day 6 of
pregnancy (46.38 ± 8.57 - fold increase versus day 0, P < 0.0001). Elevated expression
of bFGF was observed immediately before implantation on day 5 (13.04 ± 1.79 - fold
increase versus day 0, P < 0.0001), whereas VEGF showed elevated expression on day
5.5 (52.40 ± 6.50 - fold increase versus day 0, P < 0.0001).The TGFβ1 mRNA levels in the uteri of rats exposed to elevated temperatures on
days 5, 5.5, and 6 of pregnancy were significantly (P < 0.01) lower than the
expression levels in the uteri of rats kept under optimal temperatures at the same
stages of pregnancy. VEGF and bFGF expression in the uteri of rats exposed to
elevated temperatures on days 5 and 5.5 were significantly (P < 0.01) lower than the
expression levels in uteri of rats maintained under optimal temperatures at the same
stages of pregnancy, while high expression levels were observed on day 6 of
pregnancy.
In conclusion, implantation in rats was initiated on day 5 and established by day 7 of
pregnancy. Elevated ambient temperatures can delay implantation and reduce the
number of implantation sites. Elevated temperatures disturb the plasma estradiol and
progesterone levels during peri-implantation. Elevated temperatures can also lead to
prolonged gestation time, decreased litter size, neonatal death, and a sex ratio biased
toward males. Additionally, exposure to elevated temperatures during early
pregnancy has adverse effects on offspring growth. The exposure of pregnant rats to
elevated temperatures during the pre- and peri-implantation stages has stronger
adverse effects on reproductive performance than post-implantation exposure.
Morphological alterations in the apical plasma membrane indicate endometrial
receptivity. The expression patterns of TGFβ1, VEGF and bFGF and their receptors
in the oviduct indicate that these growth factors contribute to early embryonic
development. High expression levels of TGFβ1, VEGF, and bFGF during periimplantation
suggest that these growth factors play roles in implantation in rats.
Exposure of pregnant rats to elevated temperatures affects the responses of uterine
tissue (i.e., both morphological and molecular responses) to embryonic signals,leading to delay or failure of implantation. Overall, this study reveals that
morphological alterations and growth factors (TGFβ1, VEGF, and bFGF) are
involved in embryo-maternal interactions and that elevated environmental
temperatures interfere with the embryo-maternal crosstalk during peri-implantation,
leading to implantation delay/failure. These findings can help in the diagnosis and
treatment of non-receptive endometria and abnormal embryo-maternal interactions.
Download File
Additional Metadata
Actions (login required)
|
View Item |