UPM Institutional Repository

Automatic diagnosis of tuberculosis disease based on plasmonic ELISA and color-based image classification


Citation

Abuhassan, Kamal J. and Mohd Bakhori, Noremylia and Kusnin, Norzila and Mohd Azmi, Umi Zulaikha and Tania, Marzia Hoque and Evans, Benjamin Andrew and Yusof, Nor Azah and Hossain, Mohammed Alamgir (2017) Automatic diagnosis of tuberculosis disease based on plasmonic ELISA and color-based image classification. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 11-15 July 2017, Seogwipo, South Korea. (pp. 4512-4515).

Abstract

Tuberculosis (TB) remains one of the most devastating infectious diseases and its treatment efficiency is majorly influenced by the stage at which infection with the TB bacterium is diagnosed. The available methods for TB diagnosis are either time consuming, costly or not efficient. This study employs a signal generation mechanism for biosensing, known as Plasmonic ELISA, and computational intelligence to facilitate automatic diagnosis of TB. Plasmonic ELISA enables the detection of a few molecules of analyte by the incorporation of smart nanomaterials for better sensitivity of the developed detection system. The computational system uses k-means clustering and thresholding for image segmentation. This paper presents the results of the classification performance of the Plasmonic ELISA imaging data by using various types of classifiers. The five-fold cross-validation results show high accuracy rate (>97%) in classifying TB images using the entire data set. Future work will focus on developing an intelligent mobile-enabled expert system to diagnose TB in real-time. The intelligent system will be clinically validated and tested in collaboration with healthcare providers in Malaysia.


Download File

[img]
Preview
Text (Abstract)
65347.pdf

Download (34kB) | Preview

Additional Metadata

Item Type: Conference or Workshop Item (Paper)
Divisions: Institute of Advanced Technology
Faculty of Science
DOI Number: https://doi.org/10.1109/EMBC.2017.8037859
Publisher: IEEE
Keywords: Tuberculosis; Plasmonic ELISA; Automatic diagnosis of TB
Depositing User: Nabilah Mustapa
Date Deposited: 05 Oct 2018 09:55
Last Modified: 05 Oct 2018 09:55
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1109/EMBC.2017.8037859
URI: http://psasir.upm.edu.my/id/eprint/65347
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item