Citation
Veno, Jiivittha and Ahmad Kamarudin, Nor Hafizah and Mohamad Ali, Mohd Shukuri and Masomian, Malihe and Raja Abd. Rahman, Raja Noor Zaliha
(2017)
Directed evolution of recombinant c-terminal truncated staphylococcus epidermidis lipase AT2 for the enhancement of thermostability.
International Journal of Molecular Sciences, 18 (11).
art. no. 2202.
pp. 1-17.
ISSN 1661-6596; ESSN: 1422-0067
Abstract
In the industrial processes, lipases are expected to operate at temperatures above 45 °C and could retain activity in organic solvents. Hence, a C-terminal truncated lipase from Staphylococcus epidermis AT2 (rT-M386) was engineered by directed evolution. A mutant with glycine-to-cysteine substitution (G210C) demonstrated a remarkable improvement of thermostability, whereby the mutation enhanced the activity five-fold when compared to the rT-M386 at 50 °C. The rT-M386 and G210C lipases were purified concurrently using GST-affinity chromatography. The biochemical and biophysical properties of both enzymes were investigated. The G210C lipase showed a higher optimum temperature (45 °C) and displayed a more prolonged half-life in the range of 40-60 °C as compared to rT-M386. Both lipases exhibited optimal activity and stability at pH 8. The G210C showed the highest stability in the presence of polar organic solvents at 50 °C compared to the rT-M386. Denatured protein analysis presented a significant change in the molecular ellipticity value above 60 °C, which verified the experimental result on the temperature and thermostability profile of G210C.
Download File
|
Text
Directed evolution of recombinant c-terminal truncated staphylococcus epidermidis lipase AT2 for the enhancement of thermostability.pdf
Download (108kB)
|
|
Additional Metadata
Actions (login required)
|
View Item |