Citation
Abstract
Optimization strategy that encompassed one-factor-at-a-time (OFAT), response surface methodology (RSM), and artificial neural network method was implemented during medium formulation with specific aim for lysine-methionine biosynthesis employing a newly isolated strain of Pediococcus pentosaceus RF-1. OFAT technique was used in the preliminary screening of factors (molasses, nitrogen sources, fish meal, glutamic acid and initial medium pH) before proceeded to optimization study. Implementation of central composite design of experiment subsequently generated 30 experimental runs based on four factors (molasses, fish meal, glutamic acid, and initial medium pH). From RSM analysis, a quadratic polynomial model can be devoted to describing the relationship between various medium components and responses. It also suggested that using molasses (9.86 g/L), fish meal (10.06 g/L), glutamic acid (0.91 g/L), and initial medium pH (5.30) would enhance the biosynthesis of lysine (15.77 g/L) and methionine (4.21 g/L). Alternatively, a three-layer neural network topography at 4-5-2 predicted a further improvement in the biosynthesis of lysine (16.52 g/L) and methionine (4.53 g/L) by using formulation composed of molasses (10.02 g/L), fish meal (18.00 g/L), and glutamic acid (1.17 g/L) with initial medium pH (4.26), respectively.
Download File
Official URL or Download Paper: https://www.tandfonline.com/doi/pdf/10.1080/131028...
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Agriculture Faculty of Biotechnology and Biomolecular Sciences |
DOI Number: | https://doi.org/10.1080/13102818.2017.1335177 |
Publisher: | Taylor & Francis |
Keywords: | Pediococcus pentosaceus RF-1; One-factor-at-a-time; Response surface methodology; Artificial neural network; Lysine; Methionine |
Depositing User: | Ms. Nida Hidayati Ghazali |
Date Deposited: | 18 Sep 2018 02:31 |
Last Modified: | 08 Apr 2019 04:37 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1080/13102818.2017.1335177 |
URI: | http://psasir.upm.edu.my/id/eprint/61155 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |