Citation
Kaid Saif Almohai, Hani
(2005)
An Improved Chromatic Skin Color Model for Detecting Human Skin in JPEG Images.
Masters thesis, Universiti Putra Malaysia.
Abstract
The detection of the human skin has proven to be a useful and robust technique in
computer vision for detecting, segmenting, and tracking faces and hands. It is also used
in many different applications in motion capture, human-computer interaction, access
control, surveillance, and content-based image retrieval and indexing of image
databases.
To build a decision rule that will discriminate between skin and non-skin pixels, a metric
has to be introduced to measure the distance of the pixel color to skin tone. The skin
color models define the type of this metric.An improved chromatic skin color model is discussed in this thesis. The model detected
the human skin in the Bitmap images with JPEG format. A threshold method and 2D
Gaussian model were used to improve the accuracy of the skin region detected.
Good results have been achieved by using the proposed model. Results show that the
model detects the human skin with an excellent detection rates for over than 90%. This
result shows that this model is more appropriate to avoid false detection areas, while
there remains a high degree of correct detection.
This model has been implemented using the MATLAB software, which able to improve
the performance and accuracy of skin detection models.
Download File
Additional Metadata
Actions (login required)
|
View Item |