Citation
Mohd Nor, Mohd Zuhair and Ramchandran, Lata and Duke, Mikel and Vasiljevic, Todor
(2017)
Application of membrane-based technology for purification of bromelain.
International Food Research Journal, 24 (4).
pp. 1685-1696.
ISSN 1985-4668; ESSN: 2231-7546
Abstract
About 60% of world’s commercial enzyme products are proteases, giving promising opportunity to derive such enzymes sustainably from waste sources. Bromelain is a crude protease occurring naturally in pineapple, and it possesses properties of benefit for pharmaceutical, medical and food products. The production of bromelain involves a purification stage, normally performed by small-scale conventional operations which lead to high operating cost and low product recovery, while being difficult to scale up and produce polluting by-products. Membrane-based technology offers an alternative to produce high quality purified bromelain in a more efficient and sustainable process. This review identified the current state and future needs for utilising membrane processes for sustainable bromelain production at larger scales. It was found that declining membrane flux due to fouling have been reported, but may be effectively overcome with more appropriate (and advanced) membrane types and/or processing conditions. For example, interactions between macromolecules present in the pineapple derived bromelain mixture (particularly polysaccharides) and the membrane may cause performance limiting fouling, but can be overcome by enzymatic pre-treatment. Membrane fouling can be further reduced by the employment of ceramic membrane filters operating at optimised trans-membrane pressure, cross-flow velocity, feed pH and temperature. Two-stage ultrafiltration together with diafiltration or gas sparging was suggested as a means to reduce fouling and improve enzyme purity. Despite these promising technical findings, the review identified the need for a valid economic assessment to properly guide further work towards purifying bromelain from pineapple waste for sustainable production of commercial proteases.
Download File
Additional Metadata
Actions (login required)
|
View Item |