Simple Search:

The Use of a Negative Definite State-Weighting Matrix in Linear Optimal Aircraft Stability Augmentation System Problems


Citation

Zaludin, Zairil Azhar and McLean, Donald (2001) The Use of a Negative Definite State-Weighting Matrix in Linear Optimal Aircraft Stability Augmentation System Problems. Pertanika Journal of Science & Technology, 9 (2). pp. 139-147. ISSN 0128-7680

Abstract / Synopsis

Most of the published work on the Linear Quadratic Regulator (LQR) theory states it is necessary to restrict the state-weighting matrix in the quadratic performance index to be at least positive semi-definite (P.S.D). In this paper, a method of obtaining specified closed-loop eigenvalues is described which uses a procedure that results in a corresponding state-weighting matrix which can be negative definite (N.D). The value of this method for the design of aircraft Stability Augmentation Systems (SA.s) is that it permits a designer to use a set of specified closed-loop eigenvalues which correspond to parameters given in those aircraft flying qualities specifications published by aviation authorities. Because these flying qualities are based on low order mathematical models corresponding to particular modes of flight, the choice of appropriate closed-loop eigenvalues is direct. The control law obtained from this method not only provides considerable robustness, but also results in the prescribed closed-loop dynamics. The method is illustrated by presenting the results of two examples. The effectiveness of the method is shown from the results obtained from digital simulation of the SAS for both aircraft.


Download File

[img]
Preview
PDF
The_Use_of_a_Negative_Defmite_State-Weighting_Matrix.pdf

Download (2MB)

Additional Metadata

Item Type: Article
Publisher: Universiti Putra Malaysia Press
Keywords: Regulator, negative definite state-weighing matrix, linear quadratie
Depositing User: Nur Izzati Mohd Zaki
Date Deposited: 01 Dec 2009 02:07
Last Modified: 27 May 2013 07:10
URI: http://psasir.upm.edu.my/id/eprint/3696
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item