UPM Institutional Repository

Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model


Citation

Al-sharif, Abubakr A. A. and Pradhan, Biswajeet (2014) Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. Journal of the Indian Society of Remote Sensing, 42 (1). 149-163 . ISSN 0255-660X; ESSN: 0974-3006

Abstract

The main objective of this paper is to analyze urban sprawl in the metropolitan city of Tripoli, Libya. Logistic regression model is used in modeling urban expansion patterns, and in investigating the relationship between urban sprawl and various driving forces. The 11 factors that influence urban sprawl occurrence used in this research are the distances to main active economic centers, to a central business district, to the nearest urbanized area, to educational area, to roads, and to urbanized areas; easting and northing coordinates; slope; restricted area; and population density. These factors were extracted from various existing maps and remotely sensed data. Subsequently, logistic regression coefficient of each factor is computed in the calibration phase using data from 1984 to 2002. Additionally, data from 2002 to 2010 were used in the validation. The validation of the logistic regression model was conducted using the relative operating characteristic (ROC) method. The validation result indicated 0.86 accuracy rate. Finally, the urban sprawl probability map was generated to estimate six scenarios of urban patterns for 2020 and 2025. The results indicated that the logistic regression model is effective in explaining urban expansion driving factors, their behaviors, and urban pattern formation. The logistic regression model has limitations in temporal dynamic analysis used in urban analysis studies. Thus, an integration of the logistic regression model with estimation and allocation techniques can be used to estimate and to locate urban land demands for a deeper understanding of future urban patterns.


Download File

Full text not available from this repository.

Additional Metadata

Item Type: Article
Divisions: Faculty of Engineering
DOI Number: https://doi.org/10.1007/s12524-013-0299-7
Publisher: Springer
Keywords: Urban modeling; Sprawl analysis; Logistic regression; Remote sensing; GIS; Tripoli
Depositing User: Nurul Ainie Mokhtar
Date Deposited: 11 Feb 2016 08:50
Last Modified: 11 Feb 2016 08:50
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1007/s12524-013-0299-7
URI: http://psasir.upm.edu.my/id/eprint/35930
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item