UPM Institutional Repository

Optimization and mechanistic study of the liquid-phase oxidation of naphthalene over biomass-derived iron catalyst


Citation

Andas, Jeyashelly and Adam, Farook and Ab. Rahman, Ismail and Yap, Taufiq Yun Hin (2014) Optimization and mechanistic study of the liquid-phase oxidation of naphthalene over biomass-derived iron catalyst. Chemical Engineering Journal, 252. pp. 382-392. ISSN 1385-8947; ESSN: 1873-3212

Abstract

Iron supported silica catalysts were synthesized from rice husk using sol–gel route at room temperature. FT-Raman spectroscopy and XRD analysis confirmed that the iron catalysts were free from iron oxide while pyridine adsorption–desorption analysis proved the presence of both Brönsted and Lewis acid sites. NH3-TPD analysis showed the total acidity was maximum for 10 wt.% iron catalyst and declined with further incorporation of iron content. The morphology and topography of the iron catalysts changed at different iron concentration. The performance of the iron catalysts was evaluated in the liquid-phase oxidation of naphthalene with H2O2 as an oxygen source. The highest activity of 48.2% was registered over catalyst loaded with 10 wt.% Fe3+ after 4 h reaction time. Free-radical mechanism was postulated based on the GC–MS analysis. Leaching of ferric ion was minimal under the studied reaction condition. The catalyst retained its performance and stability even after four consecutive cycles.


Download File

Full text not available from this repository.

Additional Metadata

Item Type: Article
Divisions: Faculty of Science
DOI Number: https://doi.org/10.1016/j.cej.2014.04.113
Publisher: Elsevier
Keywords: Iron; Rice husk; Oxidation; Naphthalene; Free-radical
Depositing User: Nurul Ainie Mokhtar
Date Deposited: 22 Dec 2015 08:59
Last Modified: 22 Dec 2015 08:59
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1016/j.cej.2014.04.113
URI: http://psasir.upm.edu.my/id/eprint/34763
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item