Citation
Sabli, Nordin and Talib, Zainal Abidin and Mat Yunus, Wan Mahmood and Zainal, Zulkarnain and Hilal, Hikmat S. and Fujii, Masatoshi
(2013)
New technique for efficiency enhancement of film electrodes
deposited by argon gas condensation from metal chalcogenide sources.
International Journal of Electrochemical Science, 8.
pp. 12038-12050.
ISSN 1452-3981
Abstract
This work describes a new technique to enhance photoactivity of metal chalcogenide-based
semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow. The experimental work involves controlling a number of parameters such as type of source material (SM = SnSe, Cu2SnSe3 and Cu2ZnSnSe4), substrate temperature (TS = room temperature RT, 100, 200, 300°C), argon gas flow rates (VA = 5, 10, 15, 25 cm3
/min) and temperature of annealing (TA= 150, 250,
350, 450 °C) under nitrogen atmosphere. The effects of varying each parameter on structural, morphological, compositional, photoresponse and optical properties of the deposited electrode were studied. The film deposited at TS = 100 °C under VA = 25 cm3/min from Cu2ZnSnSe4 (CTZSe) source showed highest photoactivity (p %) value 55.7 % compared to films deposited from SnSe (TSe) and
Cu2SnSe3 (CTSe) sources, with p % values of 8.3 % and 34.8 %, respectively. Thus, using the quaternary Cu2ZnSnSe4 compound as a source material, offered a new inroad to prepare photoactive thin film electrodes using the argon gas condensation (AGC) technique, simply by varying argon gas flow rate.
Download File
Preview |
|
PDF (Abstract)
New technique for efficiency enhancement of film electrodes deposited by argon gas condensation from metal chalcogenide sources.pdf
Download (84kB)
| Preview
|
|
Additional Metadata
Actions (login required)
|
View Item |