Citation
Abstract
Let X be a real Banach space and K a nonempty closed convex subset of X. Let T i: K → K (i = 1, 2,., m) be m asymptotically nonexpansive mappings with sequence { k n } ⊂ [ 1, ∞), ∑ n = 1 ∞ (k n - 1) < ∞, and F = ∩ i = 1 m F (T i) ≠ ∅, where F is the set of fixed points of T i. Suppose that { a i n } n = 1 ∞, { b i n } n = 1 ∞, i = 1,2,., m are appropriate sequences in [ 0,1 ] and { u i n } n = 1 ∞, i = 1,2,., m are bounded sequences in K such that ∑ n = 1 ∞ b i n < ∞ for i = 1,2,., m. We give { x n } defined by x 1 ∈ K, x n + 1 = (1 - a 1 n - b 1 n) y n + m - 2 + a 1 n T 1 n y n + m - 2 + b 1 n u 1 n, y n + m - 2 = (1 - a 2 n - b 2 n) y n + m - 3 + a 2 n T 2 n y n + m - 3 + b 2 n u 2 n,., y n + 2 = (1 - a (m - 2) n - b (m - 2) n) y n + 1 + a (m - 2) n T m - 2 n y n + 1 + b (m - 2) n u (m - 2) n, y n + 1 = (1 - a (m - 1) n - b (m - 1) n) y n + a (m - 1) n T m - 1 n y n + b (m - 1) n u (m - 1) n, y n = (1 - a m n - b m n) x n + a m n T m n x n + b m n u m n, m ≥ 2, n ≥ 1. The purpose of this paper is to study the above iteration scheme for approximating common fixed points of a finite family of asymptotically nonexpansive mappings and to prove weak and some strong convergence theorems for such mappings in real Banach spaces. The results obtained in this paper extend and improve some results in the existing literature.
Download File
Official URL or Download Paper: http://www.hindawi.com/journals/aaa/2013/974317/
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Science Institute for Mathematical Research |
DOI Number: | https://doi.org/10.1155/2013/974317 |
Publisher: | Hindawi Publishing Corporation |
Keywords: | Fixed point; Asymptotically nonexpansive maps |
Depositing User: | Umikalthom Abdullah |
Date Deposited: | 20 Oct 2014 08:17 |
Last Modified: | 20 Oct 2017 03:32 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1155/2013/974317 |
URI: | http://psasir.upm.edu.my/id/eprint/30280 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |