Citation
Abstract
The homotopy decomposition method, a relatively new analytical method, is used to solve the 2D and 3D Poisson equations and biharmonic equations. The method is chosen because it does not require the linearization or assumptions of weak nonlinearity, the solutions are generated in the form of general solution, and it is more realistic compared to the method of simplifying the physical problems. The method does not require any corrected function or any Lagrange multiplier and it avoids repeated terms in the series solutions compared to the existing decomposition method including the variational iteration method, the Adomian decomposition method, and Homotopy perturbation method. The approximated solutions obtained converge to the exact solution as N tends to infinity.
Download File
Official URL or Download Paper: http://www.hindawi.com/journals/aaa/2013/380484/ab...
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Science Institute for Mathematical Research |
DOI Number: | https://doi.org/10.1155/2013/380484 |
Publisher: | Hindawi Publishing Corporation |
Keywords: | Boundary value problems; Poisson equations; Biharmonic equations; Numerical solution |
Depositing User: | Umikalthom Abdullah |
Date Deposited: | 25 Aug 2014 06:57 |
Last Modified: | 31 Mar 2016 08:24 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1155/2013/380484 |
URI: | http://psasir.upm.edu.my/id/eprint/30188 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |