UPM Institutional Repository

Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation


Citation

Rownaghi, Ali Asghar and Yap, Taufiq Yun Hin and Rezaei, Fateme (2009) Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation. Chemical Engineering Journal, 155 (1-2). pp. 514-522. ISSN 1385-8947; ESSN: 1873-3212

Abstract

In this paper, we have developed a simple, low-cost, template-free and surfactant-free solvothermal process for synthesis of vanadyl hydrogen phosphate hemihydrate (VOHPO4·0.5H2O) with well defined crystal size. The synthesis was performed by reaction of VPO4·2H2O with an aliphatic alcohol (isobutyl alcohol, 1-pentanol, 1-hexanol, 1-heptanol or 1-decanol). This afforded well crystallized VOHPO4·0.5H2O by solvothermal methods at 120 °C temperature. This new method significantly reduced the preparation time and lowered production temperature (50%) of catalyst precursor (VOHPO4·0.5H2O) when compared to conventional hydrothermal synthesis methods. By varying the reducing agent, the solvothermal evolution process from layered tetragonal phase VOPO4·2H2O to orthorhombic phase VOHPO4·0.5H2O was observed. It was found that the length of carbon chain in an alcohol in the solvothermal condition had a great impact on chemical and physical properties of resulting catalysts. Interestingly, there was no trace of VO(H2PO4)2 an impurity noted to be readily formed under solvothermal preparation condition. Therefore, this study introduces a more facile synthetic pathway to V(III) compounds. In addition, the microwave-synthesized catalysts exhibited some properties superior to those of conventionally synthesized catalyst such as better stability, crystallinity, and catalytic activity in the production of maleic anhydride. The characterization of both precursors and calcined catalysts was carried out using X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), N2 physisorption, temperature programmed reduction (H2-TPR) and scanning electron microscopy (SEM). The XRD pattern of the active catalyst prepared by this solvothermal method confirmed the presence of smaller crystal size (between 6 and 13 nm along 0 2 0 planes) of vanadium phosphate catalyst with higher specific surface area. Finally, the yield of maleic anhydride was significantly increased from 29% for conventional catalyst to 44% for the new solvothermal catalyst.


Download File

[img]
Preview
PDF (Abstract)
Solvothermal synthesis of vanadium phosphate catalysts for n.pdf

Download (85kB) | Preview

Additional Metadata

Item Type: Article
Divisions: Faculty of Science
DOI Number: https://doi.org/10.1016/j.cej.2009.07.055
Publisher: Elsevier
Keywords: Vanadium phosphate; Vanadyl hydrogen phosphate hemihydrate; Solvothermal synthesis; High pressure autoclave; Microwave heating; Primary alcohol; n-Butaneoxidation
Depositing User: Najwani Amir Sariffudin
Date Deposited: 29 Nov 2012 06:53
Last Modified: 24 Nov 2016 07:15
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1016/j.cej.2009.07.055
URI: http://psasir.upm.edu.my/id/eprint/16780
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item