UPM Institutional Repository

A K-Means and Naive Bayes learning approach for better intrusion detection


Citation

Muda, Zaiton and Yassin, Warusia and Sulaiman, Md. Nasir and Udzir, Nur Izura (2011) A K-Means and Naive Bayes learning approach for better intrusion detection. Information Technology Journal, 10 (3). pp. 648-655. ISSN 1812-5638; ESSN: 1812-5646

Abstract

Intrusion Detection Systems (IDS) have become an important building block of any sound defense network infrastructure. Malicious attacks have brought more adverse impacts on the networks than before, increasing the need for an effective approach to detect and identify such attacks more effectively. In this study two learning approaches, K-Means Clustering and Naïve Bayes classifier (KMNB) are used to perform intrusion detection. K-Means is used to identify groups of samples that behave similarly and dissimilarly such as malicious and non-malicious activity in the first stage while Naive Bayes is used in the second stage to classify all data into correct class category. Experiments were performed with KDD Cup '99 data sets. The experimental results show that KMNB significantly improved and increased the accuracy, detection rate and false alarm of single Naïve Bayes classifier up to 99.6, 99.8 and 0.5%.


Download File

[img]
Preview
PDF (Abstract)
A K-Means and Naive Bayes learning approach for better intrusion detection.pdf

Download (36kB) | Preview

Additional Metadata

Item Type: Article
Divisions: Faculty of Computer Science and Information Technology
DOI Number: https://doi.org/10.3923/itj.2011.648.655
Publisher: Asian Network for Scientific Information
Keywords: Intrusion detection system; K-Means clustering; Naive Bayes classifier; Accuracy; Detection rate; False alarm
Depositing User: Umikalthom Abdullah
Date Deposited: 29 Nov 2011 07:24
Last Modified: 09 Oct 2015 07:16
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.3923/itj.2011.648.655
URI: http://psasir.upm.edu.my/id/eprint/12710
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item