Citation
Omoomi, Behnaz and Peng, Yee-Hock
(2001)
Chromatic equivalence classes of certain cycles with edges.
Discrete Mathematics, 232 (1-3).
pp. 175-183.
ISSN 0012-365X; eISSN: 0012-365X
Abstract
Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written G∼H, if P(G) = P(H). A graph G is chromatically unique if for any graph H, G∼H implies that G is isomorphic with H. In this paper, we give the necessary and sufficient conditions for a family of generalized polygon trees to be chromatically unique. © 2001 Elsevier Science B.V. All rights reserved.
Download File
Official URL or Download Paper: https://linkinghub.elsevier.com/retrieve/pii/S0012...
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Science |
DOI Number: | https://doi.org/10.1016/s0012-365x(00)00355-1 |
Keywords: | Chromatic equivalence class; Chromatically unique graph; Generalized polygon trees |
Depositing User: | Ms. Azian Edawati Zakaria |
Date Deposited: | 10 Dec 2024 01:45 |
Last Modified: | 10 Dec 2024 01:45 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1016/s0012-365x(00)00355-1 |
URI: | http://psasir.upm.edu.my/id/eprint/114099 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |