UPM Institutional Repository

Bioconversion of domestic wastewater sludge by immobilized mixed culture of Penicillum corylophilum WWZA1003 and Aspergillus niger SCahmA103


Citation

Alam, Zahangir and Fakhru'l-Razi, A. and Idris, Azni and Abd-Aziz, Suraini (2002) Bioconversion of domestic wastewater sludge by immobilized mixed culture of Penicillum corylophilum WWZA1003 and Aspergillus niger SCahmA103. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 30 (4). pp. 307-318. ISSN 1073-1199

Abstract

The bioconversion of domestic wastewater sludge by immobilized mixed culture of filamentous fungi was investigated in a laboratory. The potential mixed culture of Penicillium corylophilum WWZA1003 and Aspergillus niger SCahmA103 was isolated from its local habitats (wastewater and sludge cake) and optimized on the basis of biodegradability and dewaterability of treated sludge. The observed results in this study showed that the sludge treatment was highly influenced by the effect of immobilized mixed fungi using liquid state bioconversion (LSB) process. The maximum production of dry filter cake (DFC) was enriched with fungal biomass to about 20.05 g/kg containing 23.47 g/kg of soluble protein after 4 days of fungal treatment. The reduction of COD, TSS, turbidity (optical density against distilled water, 660 nm), reducing sugar and protein in supernatant and filtration rate of treated sludge were influenced by the fungal mixed culture as compared to control (uninnoculated). After these processes, 99.4% of TSS, 98.05% of turbidity, 76.2% of soluble protein, 98% of reducing sugar and 92.4% of COD in supernatant of treated sludge were removed. Filtration time was decreased tremendously by the microbial treatment after 2 days of incubation. The effect of fungal strain on pH was also studied and presented. Effective bioconversion was observed after 4 days of fungal treatment.


Download File

[img] Text
114025.pdf - Published Version

Download (424kB)

Additional Metadata

Item Type: Article
Divisions: Faculty of Engineering
Faculty of Food Science and Biotechnology
DOI Number: https://doi.org/10.1081/bio-120006121
Publisher: Marcel Dekker
Keywords: Aspergillus niger; Bioconversion process; Domestic wastewater sludge; Dry filter cake; Filtration; Immobilization; Penicillium corylophilum
Depositing User: Mr. Mohamad Syahrul Nizam Md Ishak
Date Deposited: 08 Dec 2024 07:52
Last Modified: 08 Dec 2024 07:52
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1081/bio-120006121
URI: http://psasir.upm.edu.my/id/eprint/114025
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item