UPM Institutional Repository

On defining the incomplete gamma function


Citation

Fisher, Brian and Jolevsaka-Tuneska, Biljana and KiliÇman, Adem (2003) On defining the incomplete gamma function. Integral Transforms and Special Functions, 14 (4). pp. 293-299. ISSN 1065-2469; eISSN: 1476-8291

Abstract

The incomplete Gamma function γ(α, x+) is defined as locally summable function on the real line for α > 0 by γ(α,x+)= ∫0x+ uα-1e-udu, the integral diverging for α ≤ 0. The incomplete Gamma function can be defined as a distribution for α< 0 and α ≠ -1, - 2,... by using the recurrence formula γ(α + 1, x+) = αγ(α x+) - x+αe-x. In the following, we define the distribution γ(-m, x+) for m = 0, 1, 2, ....


Download File

Full text not available from this repository.

Additional Metadata

Item Type: Article
Divisions: Faculty of Science
DOI Number: https://doi.org/10.1080/1065246031000081667
Publisher: Taylor and Francis Group
Keywords: Delta function; Gamma function; Incomplete Gamma function
Depositing User: Ms. Zaimah Saiful Yazan
Date Deposited: 13 Jan 2025 01:37
Last Modified: 13 Jan 2025 01:37
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1080/1065246031000081667
URI: http://psasir.upm.edu.my/id/eprint/112985
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item