Citation
Fisher, Brian and Jolevsaka-Tuneska, Biljana and KiliÇman, Adem
(2003)
On defining the incomplete gamma function.
Integral Transforms and Special Functions, 14 (4).
pp. 293-299.
ISSN 1065-2469; eISSN: 1476-8291
Abstract
The incomplete Gamma function γ(α, x+) is defined as locally summable function on the real line for α > 0 by γ(α,x+)= ∫0x+ uα-1e-udu, the integral diverging for α ≤ 0. The incomplete Gamma function can be defined as a distribution for α< 0 and α ≠ -1, - 2,... by using the recurrence formula γ(α + 1, x+) = αγ(α x+) - x+αe-x. In the following, we define the distribution γ(-m, x+) for m = 0, 1, 2, ....
Download File
Full text not available from this repository.
Official URL or Download Paper: https://www.tandfonline.com/doi/abs/10.1080/106524...
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Science |
DOI Number: | https://doi.org/10.1080/1065246031000081667 |
Publisher: | Taylor and Francis Group |
Keywords: | Delta function; Gamma function; Incomplete Gamma function |
Depositing User: | Ms. Zaimah Saiful Yazan |
Date Deposited: | 13 Jan 2025 01:37 |
Last Modified: | 13 Jan 2025 01:37 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1080/1065246031000081667 |
URI: | http://psasir.upm.edu.my/id/eprint/112985 |
Statistic Details: | View Download Statistic |
Actions (login required)
![]() |
View Item |