UPM Institutional Repository

Likelihood Inference In Parallel Systems Regression Models With Censored Data


Citation

S.M.Baklizi, Ayman (1997) Likelihood Inference In Parallel Systems Regression Models With Censored Data. PhD thesis, Universiti Putra Malaysia.

Abstract

The work in this thesis is concerned with the investigation of the finite sample performance of asymptotic inference procedures based on the likelihood function when applied to the regression model based on parallel systems with censored data. The study includes investigating the adequacy of these inferential procedures as well as investigating the relative performances of asymptotically equivalent likelihood-based statistics in small samples. The maximum likelihood estimator of the parameters of this model is not available in closed form. Thus, its actual sampling distribution is intractable. A simulation study is conducted to investigate the bias, the finite sample variance, the asymptotic variance obtained from the inverse of the observed Fisher information matrix, the adequacy of this approximate asymptotic variance, and the mean squared


Download File

[img] PDF
FSAS_1997_3_A.pdf

Download (2MB)

Additional Metadata

Item Type: Thesis (PhD)
Subject: Inference
Subject: Censored observations (Statistics)
Call Number: FSAS 1997 3
Chairman Supervisor: Associate Professor Dr. Isa Daud
Divisions: Faculty of Environmental Studies
Depositing User: Mohd Nezeri Mohamad
Date Deposited: 18 Jul 2011 01:33
Last Modified: 16 May 2014 09:30
URI: http://psasir.upm.edu.my/id/eprint/11294
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item