Citation
Abstract
Nondestructive freshness evaluation models for chub mackerel (Scomber japonicus) fillets were developed using visible/near-infrared (Vis/NIR) hyperspectral imaging and multivariate regression analysis. Total 96 mackerel samples were investigated during 6 days of storage under five different conditions for measurement of pH, total volatile basic nitrogen (TVB-N), and K values along with acquisition of hyperspectral images. With partial least squares regression (PLSR) and support vector regression (SVR) along with wavelength selection method using Variables Importance in Projection (VIP) scores, performances of PLSR, VIP-PLSR, SVR, and VIP-SVR models were evaluated and compared. The VIP-PLSR models showed the best performance for predicting the freshness indicators, with R2 values of 0.86, 0.86, and 0.91 for pH, TVB-N, and K values, respectively. Furthermore, it was shown that the identification and removal of noise pixels from the hyperspectral data based on correlation analysis was effective in improving the regression results. © 2024 Elsevier Ltd
Download File
Full text not available from this repository.
Official URL or Download Paper: https://www.sciencedirect.com/science/article/abs/...
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Agriculture |
DOI Number: | https://doi.org/10.1016/j.jfoodeng.2024.112086 |
Publisher: | Elsevier |
Keywords: | Hyperspectral imaging; K value; Mackerel; Multivariate analysis; pH; Total volatile basic nitrogen (TVB-N) |
Depositing User: | Ms. Azian Edawati Zakaria |
Date Deposited: | 11 Nov 2024 03:35 |
Last Modified: | 11 Nov 2024 03:35 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1016/j.jfoodeng.2024.112086 |
URI: | http://psasir.upm.edu.my/id/eprint/112812 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |