Citation
Abstract
Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer’s disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = −1.26; 95% confidence interval [CI]: −1.77 to −0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aβ plaques (SMD = −0.91; 95% CI: −1.55 to −0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = −1.47; 95% CI: −2.56 to −0.38, p = 0.008) and Iba1 (SMD = −1.67; 95% CI: −2.56 to −0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = −2.28; 95% CI: −3.15 to −1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = −0.47; 95% CI: −1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].
Download File
Full text not available from this repository.
Official URL or Download Paper: https://www.frontiersin.org/journals/pharmacology/...
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Medicine and Health Science |
DOI Number: | https://doi.org/10.3389/fphar.2023.1053680 |
Publisher: | Frontiers Media |
Keywords: | Alzheimer’s disease; Cognition; Dementia; Endocannabinoid; Glial cell; Microglia; Astrocyte; Systematic review |
Depositing User: | Ms. Nur Faseha Mohd Kadim |
Date Deposited: | 28 Aug 2024 04:08 |
Last Modified: | 28 Aug 2024 04:08 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.3389/fphar.2023.1053680 |
URI: | http://psasir.upm.edu.my/id/eprint/109143 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |