UPM Institutional Repository

Risk assessment of bisphenol analogues towards mortality, heart rate and stress-mediated gene expression in cladocerans Moina micrura


Citation

Razak, Muhammad Raznisyafiq and Aris, Ahmad Zaharin and Yusoff, Fatimah Md and Yusof, Zetty Norhana Balia and Abidin, Aisamuddin Ardi Zainal and Kim, Sang Don and Kim, Kyoung Woong (2022) Risk assessment of bisphenol analogues towards mortality, heart rate and stress-mediated gene expression in cladocerans Moina micrura. Environmental Geochemistry and Health, 45 (6). pp. 3567-3583. ISSN 0269-4042; ESSN: 1573-2983

Abstract

Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L−1, 632.0 µg L−1 and 819.1 µg L−1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.


Download File

Full text not available from this repository.

Additional Metadata

Item Type: Article
Divisions: Faculty of Biotechnology and Biomolecular Sciences
Faculty of Forestry and Environment
International Institute of Aquaculture and Aquatic Science
DOI Number: https://doi.org/10.1007/s10653-022-01442-2
Publisher: Springer
Keywords: BPA; Monia; Water; Clean water and sanitation; Life below water
Depositing User: Ms. Che Wa Zakaria
Date Deposited: 11 Oct 2024 08:23
Last Modified: 11 Oct 2024 08:23
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1007/s10653-022-01442-2
URI: http://psasir.upm.edu.my/id/eprint/108828
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item