UPM Institutional Repository

Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm


Citation

Mohamad Yusof, Umi Kalsom and Mashohor, Syamsiah and Hanafi, Marsyita and Md Noor, Sabariah and Zainal, Norsafina (2023) Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm. Data in Brief, 50. art. no. 109484. pp. 1-6. ISSN 2352-3409

Abstract

Tumorous cancer has been a widely known and well-studied medical phenomenon; however, rare diseases like Myeloproliferative Neoplasm (MPN) have received less attention, leading to delayed diagnosis. Despite the availability of advanced technology in diagnostic tools that can boost the procedure, the morphological assessment of bone marrow trephine (BMT) images remains critical to confirm and differentiate MPN subtypes. This paper reports a histopathological imagery dataset that was created to focus on the most common MPN from the Philadelphia Chromosome (Ph)-negative type, namely Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (MF). The dataset consisted of 300 BMT images that can be used to enable computer vision applications, such as image segmentation, disease classification, and object recognition, in assisting the classification of the MPN disease. Ethical approval was obtained from the Ministry of Health, Malaysia and the bone marrow trephine images were captured using a digital microscope from the Olympus model (BX41 Dual head microscope) with x10, x20, and x40 lens types. The development of comprehensive tools deployed from this dataset can assist medical practitioners in diagnosing diseases, thus overcoming the current challenges.


Download File

Full text not available from this repository.

Additional Metadata

Item Type: Article
Divisions: Faculty of Engineering
Faculty of Medicine and Health Science
DOI Number: https://doi.org/10.1016/j.dib.2023.109484
Publisher: Elsevier BV
Keywords: Myeloproliferative neoplasm; Polycythaemia vera; Essential thrombocythemia; Primary myelofibrosis; Machine learning; Artificial intelligence; Good health and well-being
Depositing User: Ms. Zaimah Saiful Yazan
Date Deposited: 23 Sep 2024 02:21
Last Modified: 23 Sep 2024 02:21
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1016/j.dib.2023.109484
URI: http://psasir.upm.edu.my/id/eprint/108186
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item