Citation
Abstract
Source number estimation is one of the important research directions in array signal processing. To solve the difficulty of estimating the number of signal sources under a low signal-to-noise ratio (SNR), a source number enumeration method based on ensemble learning is proposed. This method first preprocesses the signal data. The specific process is to decompose the original signal into several intrinsic mode functions (IMF) by using Complementary Ensemble Empirical Mode Decomposition (CEEMD), and then construct a covariance matrix and perform eigenvalue decomposition to obtain samples. Finally, the source number enumeration model based on ensemble learning is used to predict the number of sources. This model is divided into two layers. First, the primary learner is trained with the dataset, and then the prediction result on the primary learner is used as the input of the secondary learner for training, and then the prediction result is obtained. Computer theoretical signals and real measured signals are used to verify the proposed source number enumeration method, respectively. Experiments show that this method has better performance than other methods at low SNR, and it is more suitable for real environment.
Download File
Full text not available from this repository.
Official URL or Download Paper: https://ijetae.com/Volume13Issue3.html
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Computer Science and Information Technology |
DOI Number: | https://doi.org/10.46338/ijetae0323_08 |
Publisher: | IJETAE |
Keywords: | Number estimation; Array signal processing; SNR; IMF; CEEMD; Ensemble learning; Industry; Innovation and infrastructure |
Depositing User: | Ms. Che Wa Zakaria |
Date Deposited: | 06 Aug 2024 02:44 |
Last Modified: | 06 Aug 2024 02:44 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.46338/ijetae0323_08 |
URI: | http://psasir.upm.edu.my/id/eprint/106717 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |