UPM Institutional Repository

Thermal and radiation shielding characteristics of erbium ions doped zinc tellurite glasses


Citation

Nazrin, S.n and Halimah, M.K. and Tahir, M.H.M. and Amami, Mongi and Hamid, Mohamad Amin and Gowda, G.V. Jagadeesha and Hisam, R and Sha'ari, M. Imran and Syafiq, M.Y. Muhammad and Alrowaili, Z.A. and Al-Buriahi, M.S. (2024) Thermal and radiation shielding characteristics of erbium ions doped zinc tellurite glasses. Progress in Nuclear Energy, 168. art. no. 104995. ISSN 0149-1970; ESSN: 1878-4224

Abstract

Tellurium, zinc, and erbium oxides glasses are made using the melt-quenching technique. The XRD results show that the glass samples are naturally amorphous. The TeO4 units' extended vibration are performed using FTIR. On the other hand, the TeO3 as well as Er2O3 are detected using deconvolution. When the concentration of erbium ions increases, the density and molar volume will also increase. The high value of thermal diffusivity at 0.02 and 0.03 M fractions, a large value of glass stability (greater than 100 °C), and strong thermal stability are excellent for fibre drawing. As a result, the highest linear attenuation coefficient (LAC) values are found for the sample with 5 mol% Er2O3 content, where the values drop suddenly from 0.95744 to 0.21065 cm−1 over the tested energy which ranges between 0.284 and 2.51 MeV. Among the TZEr samples, TZEr5 has the lowest half-value layer (HVL) values ranging from 0.00243 to 0.08252 cm. Thus, both LAC and HVL are considered as suitable options for radiation shielding materials.


Download File

Full text not available from this repository.

Additional Metadata

Item Type: Article
Divisions: Faculty of Science
Institute for Mathematical Research
DOI Number: https://doi.org/10.1016/j.pnucene.2023.104995
Publisher: Elsevier
Keywords: Tellurite glass; Er2O3; Thermal diffusivity; Glass transition temperature; Radiation shielding properties
Depositing User: Mohamad Jefri Mohamed Fauzi
Date Deposited: 21 Jun 2024 03:15
Last Modified: 21 Jun 2024 03:15
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1016/j.pnucene.2023.104995
URI: http://psasir.upm.edu.my/id/eprint/105652
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item