Citation
Abstract
Oil pollution such as diesel poses a significant threat to the environment. Due to this, there is increasing interest in using natural materials mainly from agricultural waste as organic oil spill sorbents. Oil palm’s empty fruit bunch (EFB), a cost-effective material, non-toxic, renewable resource, and abundantly available in Malaysia, contains cellulosic materials that have been proven to show a good result in pollution treatment. This study evaluated the optimum screening part of EFB that efficiently absorbs oil and the physicochemical characterisation of untreated and treated EFB fibre using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The treatment conditions were optimised using one-factor-at-a-time (OFAT), which identified optimal treatment conditions of 170 °C, 20 min, 0.1 g/cm3, and 10% diesel, resulting in 23 mL of oil absorbed. The predicted model was highly significant in statistical Response Surface Methodology (RSM) and confirmed that all the parameters (temperature, time, packing density, and diesel concentration) significantly influenced the oil absorbed. The predicted values in RSM were 175 °C, 22.5 min, 0.095 g/cm3, and 10%, which resulted in 24 mL of oil absorbed. Using the experimental values generated by RSM, 175 °C, 22.5 min, 0.095 g/cm3, and 10%, the highest oil absorption achieved was 24.33 mL. This study provides further evidence, as the data suggested that RSM provided a better approach to obtain a high efficiency of oil absorbed.
Download File
Full text not available from this repository.
Official URL or Download Paper: https://www.mdpi.com/2223-7747/11/1/127
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Biotechnology and Biomolecular Sciences Institute of Plantation Studies Institute of Tropical Forestry and Forest Products |
DOI Number: | https://doi.org/10.3390/plants11010127 |
Publisher: | MDPI AG |
Keywords: | Agriculture waste; Diesel spills; Sorption capacity; Absorbed; Fibre; Treated |
Depositing User: | Ms. Zaimah Saiful Yazan |
Date Deposited: | 22 May 2023 08:17 |
Last Modified: | 22 May 2023 08:17 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.3390/plants11010127 |
URI: | http://psasir.upm.edu.my/id/eprint/102365 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |