UPM Institutional Repository

Numerical approach for delay Volterra integro-differential equation


Citation

Baharum, Nur Auni and Abdul Majid, Zanariah and Senu, Norazak and Rosali, Haliza (2022) Numerical approach for delay Volterra integro-differential equation. Sains Malaysiana, 51 (12). pp. 4125-4144. ISSN 0126-6039; ESSN: 2735-0118

Abstract

The delay integro-differential equation for the Volterra type has been solved by using the two-point multistep block (2PBM) method with constant step-size. The proposed block method of order three is formulated using Taylor expansion and will simultaneously approximate the numerical solution at two points. The 2PBM method is developed by combining the predictor and corrector formulae in the PECE mode. The predictor formulae are explicit, while the corrector formulae are implicit. The algorithm for the approximate solutions were constructed and analyzed using the 2PBM method with Newton-Cotes quadrature rules. This paper focused on constant and pantograph delay types, and the previous values are used to interpolate the delay solutions. Moreover, the studies also carried out on the stability analysis of the proposed method. Some numerical results are tested to validate the competency of the multistep block method with quadrature rule approach.


Download File

Full text not available from this repository.

Additional Metadata

Item Type: Article
Divisions: Faculty of Science
Institute for Mathematical Research
DOI Number: https://doi.org/10.17576/jsm-2022-5112-20
Publisher: Universiti Kebangsaan Malaysia
Keywords: Multistep block; Newton-Cotes rule; Volterra delay integro-differential equation
Depositing User: Ms. Zaimah Saiful Yazan
Date Deposited: 04 Apr 2024 03:31
Last Modified: 04 Apr 2024 03:31
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.17576/jsm-2022-5112-20
URI: http://psasir.upm.edu.my/id/eprint/102337
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item