Citation
Abstract
During the past decade, deep learning-based classification methods (e.g., convolutional neural networks—CNN) have demonstrated great success in a variety of vision tasks, including satellite image classification. Deep learning methods, on the other hand, do not preserve the precise edges of the targets of interest and do not extract geometric features such as shape and area. Previous research has attempted to address such issues by combining deep learning with methods such as object-based image analysis (OBIA). Nonetheless, the question of how to integrate those methods into a single framework in such a way that the benefits of each method complement each other remains. To that end, this study compared four integration frameworks in terms of accuracy, namely OBIA artificial neural network (OBIA ANN), feature fusion, decision fusion, and patch filtering, according to the results. Patch filtering achieved 0.917 OA, whereas decision fusion and feature fusion achieved 0.862 OA and 0.860 OA, respectively. The integration of CNN and OBIA can improve classification accuracy; however, the integration framework plays a significant role in this. Future research should focus on optimizing the existing CNN and OBIA frameworks in terms of architecture, as well as investigate how CNN models should use OBIA outputs for feature extraction and classification of remotely sensed images.
Download File
Full text not available from this repository.
Official URL or Download Paper: https://www.mdpi.com/2076-3417/12/21/10890
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Engineering |
DOI Number: | https://doi.org/10.3390/app122110890 |
Publisher: | Multidisciplinary Digital Publishing Institute |
Keywords: | Deep learning; Convolutional neural networks; Object-based image analysis; Remote sensing; Integration frameworks |
Depositing User: | Ms. Che Wa Zakaria |
Date Deposited: | 16 Jun 2023 20:16 |
Last Modified: | 16 Jun 2023 20:16 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.3390/app122110890 |
URI: | http://psasir.upm.edu.my/id/eprint/101946 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |