Citation
Abstract
To understand the transmission dynamics of any infectious disease outbreak, identification of influential nodes plays a crucial role in a complex network. In most infectious disease outbreaks, activities of some key nodes can trigger rapid disease transmission in the population. Identification and immediate isolation of those influential nodes can impede the disease transmission effectively. In this paper, the technique for order of preference by similarity to ideal solution (TOPSIS) method with a novel formula has been proposed to detect the influential and top ranked nodes in a complex social network, which involves analyzing and studying of structural organization of a network. In the proposed TOPSIS method, several centrality measures have been used as multi-attributes of a complex social network. A new formula has been designed for calculating the transmission probability of an epidemic disease to identify the impact of isolating influential nodes. To verify the robustness of the proposed method, we present a comprehensive comparison with five node-ranking methods, which are being used currently for assessing the importance of nodes. The key nodes can be considered as a person, community, cluster or a particular area. The Susceptible-infected-recovered (SIR) epidemic model is exploited in two real networks to examine the spreading ability of the nodes, and the results illustrate the effectiveness of the proposed method. Our findings have unearthed that quarantine or isolation of influential nodes following proper health protocols can play a pivotal role in curbing the transmission rate of COVID-19.
Download File
Full text not available from this repository.
Official URL or Download Paper: https://www.sciencedirect.com/science/article/pii/...
|
Additional Metadata
Item Type: | Article |
---|---|
Divisions: | Faculty of Science Faculty of Humanities, Management and Science |
DOI Number: | https://doi.org/10.1016/j.chaos.2022.112035 |
Publisher: | Elsevier |
Keywords: | Complex network; TOPSIS method; Vital spreaders identification; Epidemic model; Transmission probability; Node-ranking |
Depositing User: | Ms. Nur Faseha Mohd Kadim |
Date Deposited: | 23 Aug 2023 03:37 |
Last Modified: | 23 Aug 2023 03:37 |
Altmetrics: | http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1016/j.chaos.2022.112035 |
URI: | http://psasir.upm.edu.my/id/eprint/100806 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |