Expectation maximization clustering algorithm for user modeling in web usage mining system

Mustapha, Norwati and Jalali, Manijeh and Jalali, Mehrdad (2009) Expectation maximization clustering algorithm for user modeling in web usage mining system. European Journal of Scientific Research, 32 (4). pp. 467-476. ISSN 1450-216X

Full text not available from this repository.


To provide intelligent personalized online services such as web recommender systems, it is usually necessary to model users’ web access behavior. To achieve this, one of the promising approaches is web usage mining, which mines web logs for user models and recommendations. Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user’s navigation pattern. The model is based on expectation-maximization (EM) algorithm and it is used for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment. The results also indicate that kind of behavior given by EM clustering algorithm has improved the visit-coherence (accuracy) of navigation pattern mining.

Item Type:Article
Keyword:Expectation maximization; Navigation pattern mining; Web usage mining
Subject:Web usage mining
Subject:Data mining
Faculty or Institute:Faculty of Computer Science and Information Technology
Publisher:EuroJournals Publishing
ID Code:14638
Deposited By: Umikalthom Abdullah
Deposited On:30 Oct 2012 09:00
Last Modified:12 Dec 2012 06:43

Repository Staff Only: Edit item detail

Document Download Statistics

This item has been downloaded for since 30 Oct 2012 09:00.

View statistics for "Expectation maximization clustering algorithm for user modeling in web usage mining system"

Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.