Simulations of Onset of Convection in a Non-Newtonian Liquid Induced by Unsteady-State Heat Conduction

Ting, Kee Chien (2001) Simulations of Onset of Convection in a Non-Newtonian Liquid Induced by Unsteady-State Heat Conduction. Masters thesis, Universiti Putra Malaysia.

[img] PDF
2045Kb

Abstract

The onset of convection in an initially static non-Newtonian liquid under Fixed Surface Temperature (FST) and Constant Heat Flux (CHF) boundary conditions was simulated using a CFD package. Steady-state and unsteady-state simulations were successfully conducted for bottom surface heating of shear thinning non-Newtonian liquids. Simulations on Newtonian liquid water and glycerine were conducted to verify the simulation setup. Fourier's law of heat conduction was used to validate the steady-state simulation results. Simulations conducted for non-Newtonian liquid with Tien et al.'s (1969) experimental data were found to agree well with Fourier's law at conduction phase. Tien et al.'s definition of non-Newtonian power-law Rayleigh number was found to be inadequate in representing the onset of convection in non-Newtonian liquid. Attempts to determine the Rayleigh number for non-Newtonian liquid using apparent viscosity was successfully carried out. A more realistic critical Rayleigh number for non-Newtonian liquid was successfully determined with local values of Rayleigh number around a convection cell successfully obtained. For simulations conducted for unsteady-state heat conduction in non-Newtonian liquid, transient heat conduction theory was used to validate the results. Convection was found to occur in a continuous deep fluid bounded by two horizontal rigid surfaces and adiabatic vertical walls. Transient critical Rayleigh number for non-Newtonian liquid under unsteady state heat conduction defined by Tan (1994) was successfully applied. Transient critical Rayleigh number for non-Newtonian liquid was found to vary with flow behavior n of the Power Law model. A more realistic transient critical Rayleigh number for non-Newtonian liquid was successfully determined using apparent viscosity. Development of thermal plumes in viscous non-Newtonian liquid were found to differ slightly from the development of thermal plumes in non-viscous Newtonian liquid. The NUmax for unsteady-state simulations of Newtonian and non-Newtonian liquid were observed to be 3.8 ± 2.0 for FST cases and 2.7 ± 1.8 for CHF cases. Effect of boundary condition at interface on onset of transient convection were studied. Velocity boundary condition of a top surface solid were found to be best approximated using top-cooling simulations. Bottom-heating simulations in a deep fluid revealed that the upper interface boundary has the property between a solid and a free surface.

Item Type:Thesis (Masters)
Subject:Newtonian fluids
Subject:Convection (Oceanography)
Chairman Supervisor:Associate Professor Tan Ka Kheng, PhD
Call Number:FK 2001 23
Faculty or Institute:Faculty of Engineering
ID Code:10993
Deposited By: Nur Kamila Ramli
Deposited On:09 Jun 2011 01:21
Last Modified:09 Jun 2011 01:22

Repository Staff Only: Edit item detail

Document Download Statistics

This item has been downloaded for since 09 Jun 2011 01:21.

View statistics for "Simulations of Onset of Convection in a Non-Newtonian Liquid Induced by Unsteady-State Heat Conduction"


Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.