UPM Institutional Repository

Effects of depth-varying vegetation roughness in two-dimensional hydrodynamic modelling


Citation

Mohd Zahidi, Izni and Yusuf, Badronnisa and Cope, Mike and Mohammed Ali, Thamer Ahmed and Mohd Shafri, Elmi Zulhaidi (2018) Effects of depth-varying vegetation roughness in two-dimensional hydrodynamic modelling. International Journal of River Basin Management, 16 (4). 413 - 426. ISSN 1571-5124; ESSN: 1814-2060

Abstract

For detailed hydrodynamic modelling of vegetated floodplains, the ability to quantify vegetation is advantageous as vegetation significantly influences the flow mechanism. Although it is widely known that roughness changes with depths, many two-dimensional (2D) models assign constant or generic roughness and the values are typically adjusted for calibration. This practice is likely to lead to the misinterpretation of the flow mechanism. This paper assesses the effects of depth-varying vegetation roughness in 2D hydrodynamic modelling based on vegetation density derived from a remotely sensed regression analysis. The simulated flood extents, depths and velocities of a historical flood event were compared between the constant and depth-varying vegetation roughness coefficients and verified against historical data and literature. A minimum value of 0.03 was found for vegetation with the lowest density of 0.01 m−1 at 0.2 m depth and a maximum value of 0.20 for vegetation with the highest density of 0.20 m−1 at 2 m flow depth, resulting in the maximum differences in flood depths and velocities of 0.40 m and 0.25 m/s, respectively. This study presented a bridge between the theoretical and practical applications which can potentially be used for evaluating vegetation restoration and removal.


Download File

[img] Text
Effects of depth-varying vegetation roughness in two-dimensional hydrodynamic modelling.pdf

Download (72kB)

Additional Metadata

Item Type: Article
Divisions: Faculty of Engineering
DOI Number: https://doi.org/10.1080/15715124.2017.1394313
Publisher: Taylor & Francis
Keywords: Vegetation roughness; Manning’s n; Depth-varying; Density; Regression; 2D hydrodynamic modelling
Depositing User: Nurul Ainie Mokhtar
Date Deposited: 18 Jun 2020 14:07
Last Modified: 18 Jun 2020 14:07
Altmetrics: http://www.altmetric.com/details.php?domain=psasir.upm.edu.my&doi=10.1080/15715124.2017.1394313
URI: http://psasir.upm.edu.my/id/eprint/72485
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item