Simple Search:

Weight Median Filter Using Neural Network for Reducing Impulse Noise


Citation

Hasoon, Feras N. (2004) Weight Median Filter Using Neural Network for Reducing Impulse Noise. Masters thesis, Universiti Putra Malaysia.

Abstract / Synopsis

Noise is undesired information that affects an image. Noise appears in images from various sources. Noise reduction and noise removal is an important task in images processing. The weight median filters are extension of the median filter; it belongs to the broad class of nonlinear filters. Weight median filter is more effective form of image processing, it is the removing ability of impulsive noise. Impulsive noise is a kind of image corruption where each pixel value is replaced with an extremely large or small value that is not related to the surrounding pixel values by a probability. iv The design of weight coefficients of the weight median filter is considered as a difficult problem. The weight coefficients of the weight median filter learnt by the backpropagation with supervised multi-layer perceptron feed-forward networks and threshold decomposition has been presented in this thesis, which has been implemented using Turbo C++ language. Good results have been achieved by using program package. Results show that weight median filter based on threshold decomposition removes impulsive noise with an excellent image detail-preserving capability compared to nonlinear filter and linear filter. Restored images evaluation by using mean square error and speed. The package has been implemented using the MATLAB language. This study provides three types of filtering windows size, 3×3, 5×5 and 7×7 window size. The result shows that the mean square error of weight median filter based on threshold decomposition using 3×3 filtering window is less than 5×5, and 7×7 filtering window and the speed of weight median filter based on threshold decomposition using 3×3 is faster than 5×5, and 7×7 filtering window.


Download File

[img]
Preview
PDF
1000548974_t_FK_2004_6.pdf

Download (303kB)

Additional Metadata

Item Type: Thesis (Masters)
Subject: Neural Network
Subject: Impulse
Call Number: FK 2004 6
Chairman Supervisor: Associate Professor Abd Rahman Bin Ramli, PhD
Divisions: Faculty of Engineering
Depositing User: Khairil Ridzuan Khahirullah
Date Deposited: 29 Apr 2008 21:28
Last Modified: 27 May 2013 06:45
URI: http://psasir.upm.edu.my/id/eprint/69
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item