Keyword Search:

Synthesis and Characterization of Poly(Hydroxamic Acid) and Poly(Amidoxime) Chelating Resins from Polymer Grafted Sago Starch

Rahman, Md. Lutfor (1999) Synthesis and Characterization of Poly(Hydroxamic Acid) and Poly(Amidoxime) Chelating Resins from Polymer Grafted Sago Starch. PhD thesis, Universiti Putra Malaysia.

[img] PDF
2193Kb

Abstract

The graft copolymerization of methyl acrylate (MA) onto sago starch was performed by free radical initiating process in which ceric ammonium nitrate (CAN) was used as an initiator. It was found that the optimum yield of grafting, grafting efficiency and rate of graft polymerization were all dependent upon the concentration of CAN, MA, sago starch (AGU) and mineral acid (H2S04) as well as reaction temperature and period. A new equation rate of polymerization was derived from the proposed reaction mechanism. A new kinetic model for graft fraction was proposed and the validity of the model was tested by the plot of l/(l-GF)ll2 as a function of sago starch concentration and reciprocal monomer (MA) concentration. The required straight line and ordinate intercept unity was obtained and the predicted kinetic model was satisfactory supported by the experimental results until a certain limit of monomer (MA) concentration. A chelating polymeric resin containing hydroxamic acid was synthesized from poly(methyl acrylate) (PMA) grafted sago starch. The binding capacity of the poly(hydroxamic acid) resin with copper is high and other metal ions also show significant binding capacity. This chelating resin has the advantage of faster rate of equilibrium and negligible affinity for alkali metal ions. The sorption capacities of metal ions were pH dependent and its selectivity towards these metal ions is in the following order: Cu2+ > Fe3+ > Cr3+ > Ni2+ > Co2+ > Zn2+ > Cd2+ > As3+> Pb2+. These paration of Cu2+ from Co2+ and Cd2+, and Fe3+ from Co2+ and Cd2+ were carried out by column technique.

Item Type:Thesis (PhD)
Subject:Graft copolymers
Subject:Methyl acrylate.
Subject:Polymerization.
Chairman Supervisor:Dr. Sidik Silong
Call Number:FSAS 1999 21
Faculty or Institute:Faculty of Environmental Studies
ID Code:9474
Deposited By: Laila Azwa Ramli
Deposited On:09 Feb 2011 07:36
Last Modified:19 Jul 2013 08:35

Repository Staff Only: Edit item detail

 
 
 
 

Universiti Putra Malaysia Institutional Repository is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.
Universiti Putra Malaysia Institutional Repository supports OAI 2.0 with a base URL of http://psasir.upm.edu.my/cgi/oai2
Best viewed using IE version 7.0 (and above) Mozilla Firefox version 3 (and above) with the resolution of 1024 x 768.