Scaled Memoryless Symmetric Rank One Method for Large-scale Unconstrained Optimization

Leong, Wah June and Abu Hassan, Malik (2008) Scaled Memoryless Symmetric Rank One Method for Large-scale Unconstrained Optimization. In: 4th Sino-Japanese Optimization Meeting (SJOM 2008), August 27-31, 2008, Tainan, Taiwan.

Full text not available from this repository.

Abstract

Memoryless quasi-Newton method is precisely the quasi-Newton method for which the initial approximation to the inverse of Hessian, at each step, is taken as the identity matrix. Hence the memoryless quasi-Newton direction can be computed without the storage of matrices, namely n2 storages. In this paper, a scaled memoryless symmetric rank one (SR1) method for solving very large (with dimensions up to 106) unconstrained optimization problems is presented. The idea is to incorporate the SR1 update in the framework of the memoryless quasi-Newton method. However, it is well-known that the SR1 update may not preserve positive definiteness even when updated from a positive definite matrix. Therefore, instead of using the identity matrix within the memoryless SR1 method we use a positive multiple of the identity (hence our choice of terminology). The used scaling factor is derived in such a way to improve the condition and preserves the positive definiteness of the scaled memoryless SR1 update. Under very mild conditions it is shown that, for strictly convex objective functions, the method is globally and R−linearly convergent. Numerical results show that the scaled memoryless SR1 method is very encouraging.

Item Type:Conference or Workshop Item (Paper)
Keyword:Large-scale unconstrained optimization, symmetric rank one method, memoryless method, optimal scaling
Faculty or Institute:Institute for Mathematical Research
ID Code:8889
Deposited By: Erni Suraya Abdul Aziz
Deposited On:23 Dec 2010 08:29
Last Modified:23 Dec 2010 08:30

Repository Staff Only: Edit item detail

Document Download Statistics

This item has been downloaded for since 23 Dec 2010 08:29.

View statistics for "Scaled Memoryless Symmetric Rank One Method for Large-scale Unconstrained Optimization"


Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.