Kinetics and Mechanism of Cadmium, Copper and Lead Ion Biosorption Using Aspergillus Flavus 44-1 Live Biomass

Kok, Kean Hin (2002) Kinetics and Mechanism of Cadmium, Copper and Lead Ion Biosorption Using Aspergillus Flavus 44-1 Live Biomass. Masters thesis, Universiti Pertanian Malaysia.

[img] PDF
1923Kb

Abstract

Study on the feasibility of using live biomass of Aspergil/us flavus as biosorbent to remove heavy metals, such as cadmium (Cd), copper (Cu) and lead (Pb) from solution was carried out in batch sorption isotherm experiments using 500.0 mL shake flask and 2 L stirred tank reactor. The effect of metal concentration (0 - 480.0 mg/L), biosorbent concentration (0 - 5.0 g/L), pH (pH 1.0 - pH 5.0) and tempenrture (l0.0°C - 60.0°C) were investigated in single (Cd, Cu, Pb) and multimetals (CdCu, CdPb, CuPb, CdCuPb) system. Preliminary study on the biosorption heat of metal ions (Cd2+, Cu2+, Pb2+) on Aspergillus flavus was also conducted. Microscopic study using Scanning and Transmission Electron Microscope and X-ray Energy Dispersive analysis were also performed. Results obtained from single cadmium (Cd), copper (Cu) and lead (Pb) system in the shake flask experiments revealed that biomass of Ajpergillus flavus was a potential biosorbent for the removal of Cd, Cu and Pb from solution. Optimum pH for the maximum removal of Cd, Cu and Pb was at pH 2.0, pH 5.0 and pH 4.0, respectively. Optimum temperature for the maximum removal of Cd, Cu and Pb was occurred at 30.0°C, 30.0°C and 40.0°C, respectively. Results from this study also showed that a small amount of Aspergillus flavus biosorbent, less than 0.6g, was sufficient to remove a significant large amount of metal ions, almost 23.33 mg/L (Cd2+, Cu2+, Pb2+) from 100.0 mglL solution. In the dual (CdCu, CdPb, CuPb) and tri-metals (CdCuPb) system, removal of cadmium (Cd), copper (Cu) and lead (Pb) from solution were interfered by the presence of inhibiting cations. The presence of competing ions have altered the equilibrium state and stability of solution chemistry of the system. The system would shift to another equilibrium in favour of the more influenced ion in the system. Performance of biosorption in a more controlled surrounding in enclosed contactor, such as stirred tank reactor was preferred by the industry. Maximum lead uptake (59.70 mg/g) by Aspergillus jlavus in stirred tank reactor could be achieved at pH 5.0, 30.0°C and biosorbent (Aspergillus jlavus) concentration of 2.0 g/L. Biosorption data of cadmium (Cd), copper (Cu) and lead (Pb) adsorption, in single Cd, Cu and Pb system revealed that the Langmuir, Scatchard and Freundlich models were applicable to the biosorption system. However, the applicability of these adsorption models in the dual( Cdeu, CdPb, CuPb) and trimetals (CdCuPb) system were not encouraging. Desorption with appropriate eluant (HCl, HN03, H2 S04) was able to recover the metal ion (Cd²⁺, Cu²⁺, Pb²⁺) from solution and prevent secondary pollution to our environment. The possibility of generatingthe absorb at (Aspergillus flavus) have led to the development of this promising technology.

Item Type:Thesis (Masters)
Subject:Chemical kinetics
Subject:Aspergillus - Biotechnology
Subject:Plant cell culture
Chairman Supervisor:Professor Mohamed Ismail Abdul Karim, PhD
Call Number:FSMB 2002 3
Faculty or Institute:Faculty of Food Science and Technology
ID Code:8463
Deposited By: Nurul Hayatie Hashim
Deposited On:23 Nov 2010 05:00
Last Modified:23 Nov 2010 05:07

Repository Staff Only: Edit item detail

Document Download Statistics

This item has been downloaded for since 23 Nov 2010 05:00.

View statistics for "Kinetics and Mechanism of Cadmium, Copper and Lead Ion Biosorption Using Aspergillus Flavus 44-1 Live Biomass"


Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.