Optimization of Simultaneous Scheduling for Machines and Automated Guided Vehicles Using Fuzzy Genetic Algorithm

Badakhshian, Mostafa (2009) Optimization of Simultaneous Scheduling for Machines and Automated Guided Vehicles Using Fuzzy Genetic Algorithm. Masters thesis, Universiti Putra Malaysia.

[img] PDF
201Kb

Abstract

Flexible manufacturing system (FMS) has been introduced by the researchers as an integrated manufacturing environment. Automated guided vehicles (AGVs) introduced as the main tool of material handling systems in FMS. While the scheduling of AGVs and machines are highly related; simultaneous scheduling of machines and AGVs has been proposed in the literature. Genetic algorithm (GA) proposed as a robust tool for optimization of scheduling problems. Setting the proper crossover and mutation rates are of vital importance for the performance of the GA. Fuzzy logic controllers (FLCs) have been used in the literature to control key parameters of the GA which is addressed as fuzzy GA (FGA). A new application of FGA method in simultaneous scheduling of AGVs and machines is presented. The general GA is modified for the aforementioned application; more over an FLC is developed to control mutation and crossover rates of the GA. The objective of proposed FGA method is to minimize the makespan, production completion time of all jobs that they are produced simultaneously. An optimal sequence of operations is obtained by GA. There is a heuristic algorithm to assign the AGVs to the operations. As the main findings, the performance of GA in simultaneous scheduling of AGVs and machines is enhanced by using proposed method, furthermore a new mutation operator has been proposed. Several experiments have been done to the proposed test cases. The results showed that tournament selection scheme may outperform roulette wheel in this problem. Various combinations of population size and number of generations are compared to each other in terms of their objective function. In large scale problems FGA method may outperforms GA method, while in small and medium problems they have the same performance. The fluctuation of obtained makespan in FGA method is less than GA method which means that it is more probable to find a better solution by FGA rather than GA.

Item Type:Thesis (Masters)
Chairman Supervisor:Professor Shamsuddin bin Sulaiman, PhD
Call Number:FK 2009 45
Faculty or Institute:Faculty of Engineering
ID Code:7354
Deposited By: Muizzudin Kaspol
Deposited On:16 Jun 2010 07:10
Last Modified:27 May 2013 07:34

Repository Staff Only: Edit item detail

Document Download Statistics

This item has been downloaded for since 16 Jun 2010 07:10.

View statistics for "Optimization of Simultaneous Scheduling for Machines and Automated Guided Vehicles Using Fuzzy Genetic Algorithm"


Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.