Optimal Maintenance Scheduling for Multi-Component E-Manufacturing System

Arab, Ali (2009) Optimal Maintenance Scheduling for Multi-Component E-Manufacturing System. Masters thesis, Universiti Putra Malaysia.

[img] PDF
546Kb

Abstract

During the recent years, development of information technology caused to develop a new industrial system which is called e-Manufacturing system. Thanks to the webenabled manufacturing technologies, the lead times are being minimized to their extreme level, and the minimum amount of inventory is kept, though the products are being made-to order. Under these circumstances, achieving near-zero downtime of the plant floor’s equipments is a crucial factor which mitigates the risk of facing unmet demands. Many researches carried out to schedule maintenance actions in short term, but none of them have utilized all of planning horizon to spread maintenance actions along available time. In this research a method of enhanced maintenance scheduling of multi-component e-Manufacturing systems has been developed. In this multi-component system, importance of all machines is considered and the benefit of the entire system in term of produced parts is taken into account (versus benefits of single machine). In proposed system, the predicted machines degradation information, online information about work in process (WIP) inventory (at inventory buffer of each work station) as well as production line’s dynamism are taken into account. All of makespans of planning horizon have been utilized to improve scheduling efficiency and operational productivity by maximizing the system throughputs. A state-of-the-art method which is called simulation optimization has been utilized to implement the proposed scheduling method. The production system is simulated by ProModel software. It plays the role of objective function of the maintenance scheduling optimization problem. Using a production related heuristic method which is called system value method, the value of each workstation is determined. These values are used to define the objective function’s parameters. Then, using genetic algorithm-based software which is called SimRunner and has been embedded by ProModel, the scheduling optimization procedure is run to find optimum maintenance schedule. This process is carried out for nine generated scenarios. At the end, the results are benchmarked by two commonly used maintenance scheduling methods to magnify the importance of proposed intelligent maintenance scheduling in the multi-component e-Manufacturing systems. The results demonstrate that the proposed optimal maintenance scheduling method yields much better system value rather than sequencing methods. Furthermore, it indicates that when the mean time to repairs are longer, this method is more efficient. The results in the simulated testbed indicate that the developed scheduling method using simulation optimization functions properly and can be applied in other cases.

Item Type:Thesis (Masters)
Chairman Supervisor:Associate Professor Datin Dr. Napsiah Binti Ismail
Call Number:FK 2009 18
Faculty or Institute:Faculty of Engineering
ID Code:7334
Deposited By: Nur Izzati Mohd Zaki
Deposited On:16 Jun 2010 04:12
Last Modified:27 May 2013 07:34

Repository Staff Only: item control page

Document Download Statistics

This item has been downloaded for since 16 Jun 2010 04:12.

View statistics for "Optimal Maintenance Scheduling for Multi-Component E-Manufacturing System"


Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.