Attribute Set Weighting and Decomposition Approaches for Reduct Computation

Al-Radaideh, Qasem Ahmad (2005) Attribute Set Weighting and Decomposition Approaches for Reduct Computation. PhD thesis, Universiti Putra Malaysia.

[img] PDF
1228Kb

Abstract

This research is mainly in the Rough Set theory based knowledge reduction for data classification within the data mining framework. To facilitate the Rough Set based classification, two main knowledge reduction models are proposed. The first model is an approximate approach for object reducts computation used particularly for the data classification purposes. This approach emphasizes on assigning weights for each attribute in the attributes set. The weights give indication for the importance of an attribute to be considered in the reduct. This proposed approach is named Object Reduct by Attribute Weighting (ORAW). A variation of this approach is proposed to compute full reduct and named Full Reduct by Attribute Weighting (FRAW).The second proposed approach deals with large datasets particularly with large number of attributes. This approach utilizes the principle of incremental attribute set decomposition to generate an approximate reduct to represent the entire dataset. This proposed approach is termed for Reduct by Attribute Set Decomposition (RASD).The proposed reduct computation approaches are extensively experimented and evaluated. The evaluation is mainly in two folds: first is to evaluate the proposed approaches as Rough Set based methods where the classification accuracy is used as an evaluation measure. The well known IO-fold cross validation method is used to estimate the classification accuracy. The second fold is to evaluate the approaches as knowledge reduction methods where the size of the reduct is used as a reduction measure. The approaches are compared to other reduct computation methods and to other none Rough Set based classification methods. The proposed approaches are applied to various standard domains datasets from the UCI repository. The results of the experiments showed a very good performance for the proposed approaches as classification methods and as knowledge reduction methods. The accuracy of the ORAW approach outperformed the Johnson approach over all the datasets. It also produces better accuracy over the Exhaustive and the Standard Integer Programming (SIP) approaches for the majority of the datasets used in the experiments. For the RASD approach, it is compared to other classification methods and it shows very competitive results in term of classification accuracy and reducts size. As a conclusion, the proposed approaches have shown competitive and even better accuracy in most tested domains. The experiment results indicate that the proposed approaches as Rough classifiers give good performance across different classification problems and they can be promising methods in solving classification problems. Moreover, the experiments proved that the incremental vertical decomposition framework is an appealing method for knowledge reduction over large datasets within the framework of Rough Set based classification.

Item Type:Thesis (PhD)
Subject:Decomposition method
Subject:Rough sets
Subject:Data mining
Chairman Supervisor:Associate Professor Md. Nasir Sulaiman, PhD
Call Number:FSKTM 2005 7
Faculty or Institute:Faculty of Computer Science and Information Technology
ID Code:5853
Deposited By: Nur Izyan Mohd Zaki
Deposited On:05 May 2010 08:36
Last Modified:27 May 2013 07:25

Repository Staff Only: item control page

Document Download Statistics

This item has been downloaded for since 05 May 2010 08:36.

View statistics for "Attribute Set Weighting and Decomposition Approaches for Reduct Computation"


Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.