Keyword Search:

Bookmark and Share

Effect of fuzzy resource allocation method on AIRS classifier accuracy

Golzari, Shahram and Doraisamy, Shyamala and Sulaiman, Md. Nasir and Udzir, Nur Izura (2009) Effect of fuzzy resource allocation method on AIRS classifier accuracy. Journal of Theoretical and Applied Information Technology, 5 (1). pp. 18-24. ISSN 1992-8645

Full text not available from this repository.


Artificial Immune Recognition System (AIRS) is immune inspired classifier that competes with famous classifiers. Many researches have been conducted to improve the accuracy of AIRS and to investigate the source of power of AIRS. Some of these researches have focused on resource allocation method of AIRS.This study investigates the difference between the accuracy of AIRS with fuzzy resource allocation and the accuracy of original AIRS, by using the reliable statistical method. The combination of ten fold cross validation and t-test was used as evaluation method and algorithms tested on ten benchmark datasets of UCI machine learning repository. Based on the results of experiments, using fuzzy resource allocation increases the accuracy of AIRS in majority of datasets but the increase is significant in minority of datasets.

Item Type:Article
Keyword:Artificial immune system; AIRS: Fuzzy resource allocation; Statistical evaluation
Subject:Immune system - Computer simulation
Subject:Artificial intelligence
Faculty or Institute:Faculty of Computer Science and Information Technology
ID Code:14248
Deposited By: Umikalthom Abdullah
Deposited On:10 May 2012 14:40
Last Modified:29 Oct 2012 12:54

Repository Staff Only: Edit item detail

Document Download Statistics

This item has been downloaded for since 10 May 2012 14:40.

View statistics for "Effect of fuzzy resource allocation method on AIRS classifier accuracy"