Content modelling for human action detection via multidimensional approach

Abdullah, Lili Nurliyana and Khalid, Fatimah (2009) Content modelling for human action detection via multidimensional approach. International Journal of Image Processing, 3 (1). pp. 17-30. ISSN 1985-2304

Full text not available from this repository.

Abstract

Video content analysis is an active research domain due to the availability and the increment of audiovisual data in the digital format. There is a need to automatically extracting video content for efficient access, understanding,browsing and retrieval of videos. To obtain the information that is of interest and to provide better entertainment, tools are needed to help users extract relevant content and to effectively navigate through the large amount of available video information. Existing methods do not seem to attempt to model and estimate the semantic content of the video. Detecting and interpreting human presence,actions and activities is one of the most valuable functions in this proposed framework. The general objectives of this research are to analyze and process the audio-video streams to a robust audiovisual action recognition system by integrating, structuring and accessing multimodal information via multidimensional retrieval and extraction model. The proposed technique characterizes the action scenes by integrating cues obtained from both the audio and video tracks. Information is combined based on visual features (motion,edge, and visual characteristics of objects), audio features and video for recognizing action. This model uses HMM and GMM to provide a framework for fusing these features and to represent the multidimensional structure of the framework. The action-related visual cues are obtained by computing the spatio temporal dynamic activity from the video shots and by abstracting specific visual events. Simultaneously, the audio features are analyzed by locating and compute several sound effects of action events that embedded in the video. Finally, these audio and visual cues are combined to identify the action scenes. Compared with using single source of either visual or audio track alone, such combined audio visual information provides more reliable performance and allows us to understand the story content of movies in more detail. To compare the usefulness of the proposed framework, several experiments were conducted and the results were obtained by using visual features only (77.89% for precision;72.10% for recall), audio features only (62.52% for precision; 48.93% for recall)and combined audiovisual (90.35% for precision; 90.65% for recall).

Item Type:Article
Keyword:Audiovisual; Semantic; Multidimensional; Multimodal; Hidden markov model
Subject:Information storage and retrieval systems - Digital video.
Subject:Optical storage devices.
Faculty or Institute:Faculty of Computer Science and Information Technology
Publisher:Computer Science Journals
ID Code:13775
Deposited By: Umikalthom Abdullah
Deposited On:04 Apr 2012 01:25
Last Modified:04 Apr 2012 01:25

Repository Staff Only: Edit item detail

Document Download Statistics

This item has been downloaded for since 04 Apr 2012 01:25.

View statistics for "Content modelling for human action detection via multidimensional approach"


Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.