Phosphorus in Acid Soils Amended with Organic and Inorganic Inputs: its Status and Interactions

Bah, Abdul Rahman (2002) Phosphorus in Acid Soils Amended with Organic and Inorganic Inputs: its Status and Interactions. PhD thesis, Universiti Putra Malaysia.

[img] PDF


The combined use of green manures (GMs) and phosphate rocks (PRs) could be a more efficient and sustainable approach in alleviating P deficiency in acid tropical soils. Understanding the chemical and biological processes or interactions influencing P dynamics in such systems is therefore, vital for adaptation to different cropping systems. The effect of GMs and P fertilizers on two acid soils (Bungor and Selangor series) was investigated in a laboratory incubation study and two glasshouse experiments using conventional and radioisotope techniques. The treatments were a factorial combination of GMs (legumes - Calopogonium caeruleum, Gliricidia sepium, and a non-legume Imperata cylindrica) and P fertilizers (PRs from North Carolina, China and Algeria, and triple superphosphate), completely randomized with up to 4 replications. Olsen P, biomass P, exchangeable Ca, mineral N and acidity were monitored in the soils for 16 months, and P in the soil fractions/pools was quantified at the end of the incubation. The relative contribution of the sources to P uptake and utilization by Setaria grass (Setaria sphacelota) was determined by the 33p.32p double isotope labeling and 32p isotope dilution techniques. The P fertilizers had little effect on available P, whilst the sole GMs and GM+P amendments altered it in two phases. An initial lag phase with depressed P levels in the first 16 weeks coincided with the buildup of NH4-N (up to 1000 mg N kg-') and exchangeable Ca, elevated soil pH (up to 2.3 units), up to 5-fold increase in microbial P, and significant GMxPxSoil interactions. The second phase showed higher available P, and much lower NH4-N, biomass P, pH. The GMs also reduced sorption capacity (by over 84%), increased available P 6-10 times, and also the AI-P and Fe-P fractions. They decreased P in the unavailable pool, the organic-P fraction and 50-75% of Ca-P in PR-amended soils. The GM contribution to P uptake was small «5%) and the utilization was <1%, but they caused much higher total P uptake than the P fertilizers alone (more than 160%). They improved fertilizer-P utilization from <20% to >50%. They significantly enhanced soil P contribution in the following order: Gliricidia<lmperata<Calopogonium. Unexpectedly, the low quality Imperata GM also increased P availability and uptake when integrated with reactive PRs, probably by improving soil moisture content. Calcium concentration, GM quality, microbial turnover, and soil P mobilizing capacity regulated P dynamics in these systems.

Item Type:Thesis (PhD)
Subject:Phosphorus - Aid soils
Chairman Supervisor:Professor Dr. Zaharah Abdul Rahman
Call Number:FP 2002 6
Faculty or Institute:Faculty of Agriculture
ID Code:10579
Deposited By: Mohd Nezeri Mohamad
Deposited On:04 May 2011 07:47
Last Modified:04 May 2011 07:51

Repository Staff Only: Edit item detail

Document Download Statistics

This item has been downloaded for since 04 May 2011 07:47.

View statistics for "Phosphorus in Acid Soils Amended with Organic and Inorganic Inputs: its Status and Interactions"

Universiti Putra Malaysia Institutional Repository

Universiti Putra Malaysia Institutional Repository is an on-line digital archive that serves as a central collection and storage of scientific information and research at the Universiti Putra Malaysia.

Currently, the collections deposited in the IR consists of Master and PhD theses, Master and PhD Project Report, Journal Articles, Journal Bulletins, Conference Papers, UPM News, Newspaper Cuttings, Patents and Inaugural Lectures.

As the policy of the university does not permit users to view thesis in full text, access is only given to the first 24 pages only.