BIOREACTOR CO-COMPOSTING OF SEWAGE SLUDGE AND RESTAURANT WASTE

By

ABDUL RAHMAN BIN ABDUL RAZAK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2004
DEDICATION

My beloved wife, Nur Azanah bte Abdullah @ Azanah bt Oleh
Thanks for your invaluable love, patience, understanding and support

My beloved father & mother
Who provided the opportunities & with your blessing and do’a

Teachers
For your advice and guidance

Friends
Thank you for the support and help
Composting is an environmental-friendly method to tackle the disposal problem of sewage sludges and municipal solid waste. With appropriate nutrients, porosity, density and moisture content during composting, pathogens such as *Salmonella typhi*, *Escherichia coli* etc. will be destroyed and the organic matter will be stabilized producing a compost product that can contribute directly to soil fertility and conditioning. Composting process system has been modernized from the heap or windrow system to the reactor system, which is a comparatively fast process. A 200 liters rotating drum bioreactor/composter was designed, fabricated and used in this co-composting study. This bioreactor was designed in Universiti Putra Malaysia and was fabricated by Amsea Environment Sdn. Bhd. Three different types of dewatered sewage sludges, i.e. septic tank, oxidation pond and activated
sewage sludges were successfully co-composted with municipal solid waste in a two-stage process.

The physicochemical and biological characteristics of these municipal solid waste (restaurant waste) and sewage sludges were measured before being used as raw materials for the co-composting process. For the bioreactor composting, the raw materials were fermented for 7 days inside the 200 liters bioreactor before being matured outside the bioreactor in a windrow pile until fully matured and ready to be used. A 2:1 (w/w) ratio of municipal solid waste and sewage sludge was found to give the best initial C/N ratio for the composting process. The carbon content decreased and the nitrogen content increased towards the end of the composting process, which resulted in the reduction of C/N ratio during the composting process to below 20. The low C/N ratio of the final compost product was very important as the indicator of compost maturity and stability. The breakdown of organic materials inside the bioreactor did not increase the temperature to the thermophilic range (50-60°C), where breakdown of organic matter by microorganisms is at the optimum rate. In order to overcome the temperature problem, heated air was supplied to the bioreactor, increasing the temperature of the composting process. Shredded garden waste was added as bulking agent. Bioreactor co-composting took around 40-45 days to produce matured compost. The characteristics of the sewage sludge compost products were almost similar compared to commercial compost
available in the local market and also complied with the United States Environmental Protection Agency (USEPA) standard. By using bioreactor system the compost products were improved based on nutrient contents and duration of composting process. The planting out performance of spinach with the research compost showed satisfactory results.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENGKOMPOSAN BERSAMA ENAPCEMAR KUMBAHAN DAN SISA PEPEJAL MAJLIS PERBANDARAN MENGGUNAKAN BIOREAktor

Oleh

ABDUL RAHMAN BIN ABDUL RAZAK

Jun 2003

Pengerusi : Profesor Mohd. Ali Hassan, Ph.D
Fakulti : Sains Makanan dan Bioteknologi

Pengkomposan merupakan kaedah mesra alam bagi mengatasi masalah pelupusan enapcemar kumbahan daan sisa pepejal majlis perbandaran. Dengan kandungan nutrien, keporosan, ketumpatan dan kandungan lembapan yang sesuai semasa proses pengkomposan, mikrob yang berbahaya seperti Salmonella typhi, Escherichia coli dan sebagainya akan dimusnahkan dan bahan organik akan distabil menghasilkan produk kompos yang boleh menyumbang kepada kesuburan tanah. Sistem bagi proses pengkomposan telah dimodenkan dari sistem “windrow” atau timbunan longgokan/batasan kepada sistem reaktor yang terbukti satu proses yang lebih pantas. Dalam kajian ini, sebuah bioreaktor/komposter jenis drum berputar bersaiz 200 liter telah direka dan dibina bagi digunakan didalam penyelidikan pengkomposan bersama ini. Bioreaktor ini telah direka bentuk

kepada jual termofilik (50-60ºC) dimana penguraian bahan organik oleh mikroorganisma berlaku pada kadar yang optima. Bagi mengatasi masalah suhu, udara panas telah dibekalkan ke dalam bioreaktor yang berjaya meningkatkan suhu semasa proses pengkomposan. Sisa serpihan tanaman/kayu telah ditambah sebagai agen pempukal. Pengkomposan bersama menggunakan bioreaktor mengambil masa sekitar 40-45 hari bagi menghasilkan kompos yang matang. Ciri-ciri akhir produk kompos enapcemar kumbahan dan sisa pepejal majlis perbandaran adalah hampir sama berbanding dengan kompos komersil yang ada dipasaran tempatan dan juga menepati piawaian Agensi Perlindungan Alam Sekitar Amerika Syarikat (USEPA). Dengan menggunakan sistem bioreaktor, produk kompos dapat diperbaiki berdasarkan kepada kandungan nutrien dan jangkamasa proses pengkomposan. Ujian tanaman pokok bayam bagi mengukur kualiti hasil produk kompos yang terhasil menunjukkan keputusan yang memuaskan.
ACKNOWLEDGEMENTS

I am thankful to God Almighty, who has helped me all along in my life, in this research and in the preparation of this thesis.

I would like to express my appreciation and gratitude to my chairman, Prof. Dr. Hj. Mohd. Ali Hassan and members of the supervisory committee Prof. Dr. Mohamed Ismail Abdul Karim, Associate Prof. Dr. Arbakariya Arrif and Prof. Dr. Azni Idris for the guidance, suggestion, supervision and encouragement through this project. Also not forgetting, to my colleagues; Mrs. Nor‘Aini Abd Rahman, Zainal bin Baharum, Jame’ah Hamed, Ong Ming Hooi, Phang Lai Yee, Norrizan Abdul Wahab, Mrs. Hafizah Kassim, Manisya Zauri, Sim Kean Hong, Cheong Weng Chung; staff of the Department of Biotechnology; Mr. Rosli Aslim, Mrs. Renuga Panjamurti, Mrs. Latifah Hussein, Mrs. Aluyah Marzuki, Mr. Azman and the staff of University Business Centre, Universiti Putra Malaysia; thank you for your help and cooperation in this project.

I would like to express my appreciation to Indah Water Konsortium Sdn. Bhd. (IWK) and Ministry of Science, Technology and Environment (IRPA) for the financial support for this composting project. I would like to extend my special thanks to Dr. Aminuddin Mohd Baki and Ir. Mohamed Haniffa Abdul Hamid from IWK Head Quarters, Mr. Xavier from IWK Taman Tun Dr. Ismail; Mr. Suria, Mr. Razali and Mr. Fadhil from IWK Lembah Pantai
also Mr. Loh Ghim Joo from Amsea Environmental Sdn. Bhd. for their help throughout this study.

All members in Feed Bioprocess Lab. MARDI, especially Pn. Noraini Samat, for the stimulating professional relationship we have had. I sincere my wish them all the best in their future endeavors.

Last but not least, to my beloved wife, Nur Azanah bte Abdullah and all my family members, I am deeply indebted for your sacrifices, understanding, patient and encouragement, for all those years of loving-kindness and for nurturing me to be the person I am now.
I certify that an Examination Committee met on 28th June 2004 to conduct the final examination of Abdul Rahman bin Abdul Razak on his Master of Science thesis entitled “Bioreactor Co-Composting of Sewage Sludge and Restaurant Waste” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Associate Professor Dr. Fatimah Abu Bakar
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

Suriani Abdul Aziz, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Rosfarizan Mohamad, Ph.D.
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Abdul Jalil Abdul Kader, Ph.D.
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohd. Ali Hassan, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

Mohamed Ismail Abdul Karim, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Arbakariya Ariff, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Azni Idris, Ph.D.
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ABDUL RAHMAN BIN ABDUL RAZAK

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>RESEARCH PAPERS PUBLISHED IN JOURNALS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
</tbody>
</table>

- Introduction 6
- Raw Materials 9
 - Municipal Solid Waste (MSW) 9
 - Restaurant waste/Food Waste 11
 - Sewage Sludge 14
- MSW Management 18
- Co-composting Process 19
- Process of Composting 25
- Benefits of Compost 31
- Composting System 34
 - Reactor/In-Vessel Systems 35
 - Rotating Drum or “Dano-type” systems 39
- Main Factors Affecting Composting 46
 - Temperature 46
 - Time 47
 - pH 49
 - C/N Ratio 50
 - Moisture Content 51
 - Aeration 52
 - Mixing 54
Bulking Agent 54
Size 55
Other Factors 56
Microorganisms 56
Seeding and Reseeding 57
Use of Inocula 57
Quality of Compost 60

III MATERIALS AND METHODS 63

Chemical Reagents 63
Raw Materials for Co-Composting Process 64
Restaurant Waste 64
Dewatered Sewage Sludge 65
Bioreactor Engineering Design 67
Experimental Design of Co-composting Process 70
First Phase of Co-Composting of Sewage Sludges and Restaurant Waste 70
Second Phase of Co-Composting of Sewage Sludges and Restaurant Waste 71
Laboratory Sample Analysis 75
Physical Analysis 75
Observation of Texture, Colour, Odour and Size 75
Sample Analysis 75
Moisture Content and Total Solids 75
Temperature 76
Chemical Analysis 77
pH 77
Total Carbon 77
Total Kjeldahl Nitrogen 79
C/N Ratio 81
Heavy Metals and Nutrients Content 81
Screening of compost 83
Biological Analysis 83
Germination Test 83
Growth Test 84
Determination of Total Microbial Count 85
Commercial Compost 86
OrganoGro 250 Compost 86
IV RESULTS AND DISCUSSION

Physico-chemical Characterization of Raw Waste 87
Bioreactor Co-Composting of Septic Tank Sewage Sludge and Restaurant Waste 91
Bioreactor Co-Composting of Oxidation Pond Sewage Sludge and Restaurant Waste 93
Bioreactor Co-Composting of Activated Sewage Sludge and Restaurant Waste 96
Bioreactor Co-Composting of Activated Sewage Sludge and Restaurant Waste With Added Bulking Agent and Heated Air 98
Performance of Bioreactor during Co-composting Process 100
 Temperature Profiles 100
 pH Profiles 104
 Carbon Profiles 106
 Nitrogen Profiles 108
 Carbon to Nitrogen Ratio Profiles 109
 Moisture Content Profiles 111
Comparison of Research Compost to the Commercial Compost 113
Compost Maturity and Stability 116
Heavy Metals and Nutrients / Minerals 118
Sieving of Research Compost 120
Planting Out Performance 122

V CONCLUSION AND SUGGESTIONS

Conclusion 124
Suggestions 126

REFERENCES 128
APPENDICES 141
BIODATA OF THE AUTHOR 169
PUBLICATIONS 170
R&D INNOVATION EXHIBITION AND AWARDS 171