APPLICATION OF SAGO STARCH IN INSTANT NOODLES

NORAMINA BT. HJ. HAMPDEN

FSMB 2001 24
APPLICATION OF SAGO STARCH IN INSTANT NOODLES

By

NORAMINA BT. HJ. HAMPDEN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Food Science and Biotechnology
Universiti Putra Malaysia

March 2001
This work is dedicated to
all my family members
who had given me constant
encouragement and support.
A study was conducted to investigate the effects of utilizing sago starch in the preparation of instant noodles. The first aspect of the study was to observe the effects of partial substitution of native sago starch on the amylograph profiles of the composite flours and the textural quality of the instant noodles. From the study, it was concluded that the instant noodles produced using native sago starch were of inferior quality in terms of colour, cooking losses, texture and sensory acceptability in comparison to the control which was prepared from 100% wheat flour. However, of all the wheat flour/sago starch blends, the most acceptable in terms of colour and texture from both instrumental and sensory assessment was the sample that was substituted with 20% and below.

The second aspect of this study was to determine whether the different types of firming agents could improve the textural quality of the instant noodles produced. The firming agents that were used in the study were alkali mixtures of potassium and
sodium carbonate, guar gum and potassium alum. The composite flour used was at the ratio of 80% wheat flour to 20% sago starch. Based on the results, the use of the alkali mixture or guar gum between the range of 0.5% to 1.0% concentrations produced noodles that have improved noodle colour and strength, in terms of firmness and elasticity, consequently giving a more acceptable product compared to the addition of potassium alum. Potassium alum can be a potential firming additive but has to be used at concentrations of more than 1%. However, the use of potassium alum at more than 1% levels was not studied.

Finally, the last part of the study involved an investigation on the effect of partially replacing the wheat flour in the instant noodle preparation with modified sago starch on the textural quality of the instant noodle. The phosphorylated sago starch PSS1 was prepared in the laboratory using a mixture of 5% sodium tripolyphosphate and 2% sodium trimetaphosphate at pH 9.5 at a temperature of 135°C for 2 hours whereas a physically modified sago starch NMS22 was provided by a sago starch company. The replacement of wheat flour with PSS1 (phosphorylated sago starch) and NMS22 up to 35% improved the textural quality of the sago starch substituted wheat noodles. The resulting noodles became more firm and elastic when cooked. Noodles with PSS1 were preferred since there is a reduced cooking loss even at a higher substitution level and less sticky during cooking. Otherwise, the type and the quantity of modified starches did not affect the overall acceptability of the noodles up to 35% replacement since only the colour was significantly affected at substitution levels greater than 35%.
Abstrak Tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGGUNAAN KANJI SAGU RUMBIA DI DALAM MI SEGERA

Oleh

NORAMINA BT. HJ. HAMPDEN

Mac 2001

Pengerusi: Encik Dzulkifly B. Mat Hashim

Fakulti: Sains Makanan dan Bioteknologi

Satu kajian terhadap kesan penggunaan kanji sagu rumbia ke atas penyediaan mi segera telah dijalankan. Aspek pertama di dalam kajian ini ialah melihat kesan penggunaan dan penggantian tepung gandum dengan kanji sagu natif (tidak terubahsuai) terhadap profil amilograf tepung komposit tersebut dan kualiti tekstur mi segera yang telah dihasilkan. Dalam kajian ini, keputusan menunjukkan bahawa mi segera yang dihasilkan menggunakan kanji sagu rumbia adalah kurang bermutu dari segi warna, kehilangan bahan pepejal semasa pemasakan, tekstur dan penerimaan sensori bila dibandingkan dengan sampel mi segera yang dihasilkan menggunakan 100% tepung gandum. Bagaimanapun, penilaian instrumental dan sensori menunjukkan bahawa penerimaan mi yang dihasilkan dari tepung komposit yang mengandungi 20% atau kurang kanji sagu amat menggalakkan dari segi warna dan tekstur.
Aspek kedua kajian ialah untuk memperbaiki kualiti tekstur mi segera yang dihasilkan dalam kajian sebelumnya dengan menggunakan additif. Additif yang digunakan ialah campuran potassium dan sodium karbonat, gam guar dan potassium alum. Tepung komposit yang digunakan mengandungi 20% kanji sagu dan 80% tepung gandum. Keputusan kajian menunjukkan penggunaan campuran alkali atau gam guar di antara julat 0.5% dan 1.0% memberi kesan yang amat signifikan ke atas kekerasan dan keanjalan mi dan memberi warna yang lebih menarik. Oleh itu, produk ini lebih diterima dibandingkan dengan penggunaan potassium alum. Potassium alum berpotensi digunakan sebagai additif dalam konsentrasi lebih tinggi dari 1.0%. Bagaimanapun, penggunaan potassium alum pada kadar tersebut tidak dikaji.

Kajian terakhir dalam projek ini ialah menyiasat kesan penggantian tepung gandum dengan kanji sagu terubahsuai terhadap mutu tekstur mi segera. Kanji sagu terfosforilasi PSS1 dihasilkan di makmal menggunakan campuran 5% Sodium Tripolifosfat dan 2% Sodium Trimetafosfat pada pH 9.5, suhu 135°C untuk 2 jam, manakala kanji sagu terubahsuai NMS22 diperolehi dari syarikat sagu tempatan. Penggantian tepung gandum dengan PSS1 dan NMS22 sehingga 35% boleh menghasilkan mi segera yang bermutu dari segi tekstur. Mi segera yang dihasilkan menjadi lebih kenyal dan elastik bila dimasak. Mi yang ditambah dengan PSS1 lebih diterima sebab kehilangan peratusan pepejal semasa pemasakan adalah kurang dan tidak melekit. Keseluruhannya, jenis dan kuantiti kanji sagu terubahsuai tidak memberi kesan yang ketara pada tahap gantian sehingga 35%, hanya kesan terhadap warna mi yang amat signifikan ketika dinilai.
ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude and deepest appreciation to my supervisor and Chairman of the Supervisory Committee, Mr. Dzulkifli B. Mat Hashim for his invaluable advice and guidance, constructive criticisms, constant encouragement and patience throughout the course of this study and the preparation of this thesis.

My sincere appreciation also goes to all the members of the Supervisory Committee i.e Associate Professor Dr. Salmah Yusof, Associate Professor Dr. Sharifah Kharidah Syed Muhammad and Professor Dr. Yaakob B. Che Man for their invaluable support and guidance during this study.

I would like to thank the management of CRAUN Research Sdn. Bhd., Kuching, Sarawak for providing the research facilities, technical advice and assistance in carrying out this project.

Last but not least, I am greatly indebted to my family and friends for their loving support and encouragement throughout the length of my study.
I certify that an Examination Committee met on 13th March 2001 to conduct the final examination of Noramina Binti Hampden, on her Master of Science thesis entitled “Application of Sago Starch in Instant Noodles” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

NAZAMID SAARI, Ph.D.
Department of Food Science,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Chairman)

DZULKIFLI MAT HASHIM
Department of Food Science,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Member)

SALMAH YUSOF, Prof. Madya
Department of Food Science,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Member)

SHARIFAH KHRIDAH SYED MUHAMMAD, Prof. Madya
Department of Food Science,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Member)

YAACOB CHE MAN, Profesor
Department of Food Science,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Member)

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Profesor/Deputy Dean of Graduate School
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

AINI IDERIS, Ph.D.
Professor/
Dean of Graduate School
Universiti Putra Malaysia

Date: 14 JUN 2001
I hereby declared that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declared that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NORAMINA BT HJ HAMPDEN

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>Types of Noodles</td>
<td>5</td>
</tr>
<tr>
<td>Instant Noodles</td>
<td>9</td>
</tr>
<tr>
<td>Types of Instant Noodles</td>
<td>9</td>
</tr>
<tr>
<td>Production and Consumption Trends of Instant Noodles</td>
<td>11</td>
</tr>
<tr>
<td>Production Technology of Instant Noodles</td>
<td>12</td>
</tr>
<tr>
<td>Raw Materials</td>
<td>12</td>
</tr>
<tr>
<td>Noodle Processing</td>
<td>15</td>
</tr>
<tr>
<td>Criteria of Instant Noodle Quality</td>
<td>17</td>
</tr>
<tr>
<td>Flour Quality</td>
<td>20</td>
</tr>
<tr>
<td>Processing Conditions</td>
<td>24</td>
</tr>
<tr>
<td>Storage Quality</td>
<td>26</td>
</tr>
<tr>
<td>Characteristics of Uncooked Instant Noodle</td>
<td>27</td>
</tr>
<tr>
<td>Characteristics of Cooked Instant Noodles</td>
<td>28</td>
</tr>
<tr>
<td>Texture Characteristics</td>
<td>29</td>
</tr>
<tr>
<td>Effects of Additives in Noodles</td>
<td>31</td>
</tr>
<tr>
<td>Sago Starch and Its Application in Instant Noodles</td>
<td>41</td>
</tr>
<tr>
<td>Sago Starch</td>
<td>41</td>
</tr>
<tr>
<td>Physico – characteristics of sago starch</td>
<td>41</td>
</tr>
<tr>
<td>Utilization of Sago Starch</td>
<td>51</td>
</tr>
<tr>
<td>Application of Sago Starch</td>
<td>54</td>
</tr>
</tbody>
</table>

xi
III EFFECTS OF SUBSTITUTION WITH NATIVE SAGO STARCH ON THE QUALITY OF INSTANT NOODLE

Introduction 55
Materials and Methods 57
Materials 57
Methods 57
Analyses of Blended Flours 59
Analyses of Dough Quality 61
Analyses of Instant Noodle 62
Results and Discussion 66
Effects of Substituted Sago Starch on Wheat Flour 66
Characteristics 71
Quality of Dough, Dry and Cooked Instant Noodles 74
Effects of Substitution with Sago Starch on Dough Quality 79
Effects of Substitution with Sago Starch on Instant Noodle Quality 90
Texture Profile Analysis of Instant Noodle Parameters 97
Sensory Evaluation of Textural Characteristics of Instant Noodle 102
Overall Quality and Acceptability 104
Conclusion 105

IV THE USE OF FIRMING AGENTS TO IMPROVE THE QUALITY OF WHEAT SAGO INSTANT NOODLES

Introduction 105
Materials and Methods 106
Analyses of Dough Quality 108
Analyses of Instant Noodle 109
Sensory Evaluation 110
Results and Discussion 111
Evaluation on the Effects of Firming Agents on the Amylograph Profiles of WFS20 111
Effects of Firming Agents on Dough Quality 115
Effects of Firming Agents on Instant Noodle Quality 120
Texture Profile Analysis of Instant Noodle Parameters 125
Sensory Evaluation of Texture Characteristics of Instant Noodles 127
Conclusion 129

xii
MODIFIED SAGO STARCH IN INSTANT NOODLES

Introduction

- Materials and Materials
 - Experimental Design
 - Amylograph Profiles of Blended Flours
 - Analyses of Blended Flours
 - Analyses of Dough Quality
 - Analyses of Instant Noodle
 - Texture Profile Analysis
 - Sensory Evaluation

Result and Discussion

- Effects of Modified Sago Starch on Wheat Flour Characteristics
- Effects of Modified Sago Starches on Dough Quality
- Effects of Modified Sago Starches on Instant Noodle Quality
- Effects of Modified Sago Starches on Cooked Instant Noodle
- Effects on TPA Parameters

Conclusion

- General Conclusions and Recommendations
- Conclusion
- Recommendations

Bibliography

Appendices

- A Additional Tables
- B Additional Figures
- C Additional Plates
- D (I) Sensory Evaluation Sheet
- (II) Glossary of Food Testing Terms and Definitions for use with the QTS25 Texture Analyzer

Biographical Data of the Author
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Classification of Noodles.</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Characteristics of Commercial Instant Noodles</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Wheat flour specifications for various instant noodles</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Amylose and amylopectin contents and degree of polymerization of various starches</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>The physico-characteristics of different types of starches</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>The specifications of edible sago starch according to the Malaysian Standards</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Uses of sago starch in Food Industries in Sarawak</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>Mean values for physical characteristics of blended wheat flours and sago starch</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>Pasting Temperature and Viscosities at 95°C of Different Ratios of Sago Starch to Wheat Flours</td>
<td>71</td>
</tr>
<tr>
<td>10</td>
<td>Visual observation on characteristics of dough, uncooked and cooked instant noodle made from wheat flour and sago starch blends</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>Effect of Blended flours on Dough Texture Quality</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>Mean values for characteristics of both uncooked and cooked instant noodle prepared from different flour blends</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>Texture profile parameters for cooked instant noodles prepared from different flour blends</td>
<td>89</td>
</tr>
<tr>
<td>14</td>
<td>Mean scores for Colour, Brittleness, Elasticity, Hardness and Taste of Varying Instant Noodle Formulations</td>
<td>101</td>
</tr>
</tbody>
</table>
The effect of varying levels of guar gum on the pasting characteristics of the blended starch WFS20

The effect of varying levels of potassium-sodium carbonate on the pasting characteristics of the blended starch WFS20.

The effect of varying levels of potassium alum on the pasting characteristics of the blended starch WFS20.

The effect of varying levels of carbonate mixture on instant noodle quality

The effect of varying levels of potassium alum on instant noodle quality

The effect of varying levels of guar gum on instant noodle quality

Mean Scores of Cooked Instant Noodle Sample WFS20 Treated with Different Types of Firming Agents

Mean Values for Physical Characteristics of Blended Wheat Flour and Modified Sago Starches

Pasting behaviour of wheatflour substituted with varying levels of modified sago starches

Effect of blended flours on dough texture quality

Mean values for characteristics of both uncooked and cooked instant noodle prepared from modified sago starches

Effect of modified starch on instant noodle quality: Texture Profile Analysis

Mean scores of the characteristics of cooked instant noodle samples treated with different types of modified starches at varying concentrations

The effect of varying levels of guar gum on dough texture quality

The effect of varying levels of carbonate mixture on dough texture

The effect of varying levels of potassium alum on dough texture
31 Requirements for instant noodles (SIRIM M526, 1988) 182
32 Correlation coefficient table of instrumental assessment vs sensory evaluation 182
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flowchart showing instant noodle processing</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Amylopectin molecules</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Amylose molecules</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>Brabender viscosgrams of various starches</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>Brabender viscosgrams of blended flours</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>The effect of varying levels of sago starch on Dough: Hardness</td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td>The effect of varying levels of sago starch on Dough: Stickiness</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>The effect of varying levels of sago starch on Dough: Extensibility</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>The effect of varying levels of sago starch on Dough: Relaxation.</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>Moisture content of uncooked instant noodles using different flour blends</td>
<td>81</td>
</tr>
<tr>
<td>11</td>
<td>The effect of varying levels of sago starch on noodle colour</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>The effect of varying levels of sago starch on cooking loss in noodles.</td>
<td>84</td>
</tr>
<tr>
<td>13</td>
<td>The effect of varying levels of sago starch on cooked weight and weight gain of noodles</td>
<td>86</td>
</tr>
<tr>
<td>14</td>
<td>The effect of varying levels of sago starch on noodle firmness (TPA)</td>
<td>91</td>
</tr>
<tr>
<td>15</td>
<td>The effect of varying levels of sago starch on noodle adhesiveness (TPA)</td>
<td>92</td>
</tr>
</tbody>
</table>
16 The effect of varying levels of sago starch on noodle cohesiveness (TPA)
17 The effect of varying levels of sago starch on noodle springiness (TPA).
18 The effect of varying levels of sago starch on noodle gumminessness (TPA)
19 The effect of varying levels of sago starch on noodle chewiness (TPA)
20 A cob-web diagram showing average panelists scores for the different formulations of instant noodles for colour, brittleness, elasticity, hardness and taste
21 Effect of different firming agents on dough quality – Softness(Firmness)
22 Effect of different firming agents on dough quality – Stickiness
23 Effect of different firming agents on dough quality – Extensibility
24 Effect of different firming agents on dough quality – Relaxation.
25 Instant noodle quality – colour ‘b’ values.
26 The effect of modified starches on the L, a and b values of Instant noodle
27 The effect of modified starches on the elasticity of Instant noodle
28 The effect of modified starches on the adhesiveness of Instant noodle
29 The effect of modified starches on the cohesiveness of Instant noodle
30 A cob-web diagram showing the panelists average scores for various eating attributes of instant noodle with different concentrations of modified starches
31 Brabender viscograms of guar gum on WFS20 profile 183
33 Brabender viscograms of alkali on WFS20 profile 184
34 Brabender viscograms of potassium alum on WFS20 profile 185
35 Brabender viscograms of pasting profile of wheat flour substituted with modified sago starch NMS22. 186
36 Brabender viscograms of pasting profile of wheat flour substituted with modified sago starch PSS1 187
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The different types of instant noodles found in Malaysia</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Photomicrograph of sago starch</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Photomicrograph of potato starch</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Photomicrograph of noodle microstructure at 20% substitution level</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Photomicrograph of noodle microstructure at 30% substitution level</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>Photomicrograph of noodle microstructure at 50% substitution level</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>Uncooked instant noodle samples with varying levels of native sago starch.</td>
<td>188</td>
</tr>
<tr>
<td>8</td>
<td>Uncooked instant noodle samples with firming agents</td>
<td>188</td>
</tr>
<tr>
<td>9</td>
<td>Stevens Farnell QTS25 Texture Analyzer</td>
<td>189</td>
</tr>
<tr>
<td>10</td>
<td>Brabender Viscometer / Amylograph</td>
<td>189</td>
</tr>
<tr>
<td>11</td>
<td>Moisture Analyzer Sartorius MA30</td>
<td>190</td>
</tr>
<tr>
<td>12</td>
<td>Juki Colorimeter</td>
<td>190</td>
</tr>
</tbody>
</table>
CHAPTER 1
GENERAL INTRODUCTION

Noodles are important end products from cereal grains, particularly wheat, and are a staple food in many Asian countries. Noodles are usually made from wheat flour by a process of sheeting and cutting. Flour-based noodles are mainly consumed in Asian countries. Other types of cereal grains that can be used to prepare noodles include rice, buckwheat, mung bean and sweet potato.

Noodles have extended shelf life in the dried form and retain their sizes and shapes during packing and shipping. They are relatively inexpensive and easily prepared. They are also important nutritionally, being high in complex carbohydrates and low in fat. Therefore, they appear frequently in both the diets of the poor and the rich.

There are various types of noodles produced throughout the world. Instant noodles are one of the most popular oriental noodles in East Asia and are growing in popularity throughout the world. In Malaysia, it has become one of the fastest growing industries. Instant noodle is widely consumed by all the ethnic groups in the country as a convenience food (Abu Kassim, 1986). Instant noodles generally refer to the steamed and deep-fat fried products, which are called ramyon in Korea and
Ramen in Japan (Kim, 1996). At present, instant noodles are sold in polythene bags, cup or bowl whereby a soup base is included separately for seasoning.

Instant noodles are prepared from a wheat flour dough which contains an alkaline salt composition containing greater than one Potassium or Sodium carbonates as an additive and ortho, meta or polyphosphates (UK Patent 1980). However, certain high quality noodles is produced without the addition of alkali. Instant noodles are boiled and reconstituted in an amount of water in excess of the predetermined amount required for the reconstitution of the noodles. The boiled juice, in excess of a predetermined amount remaining after restoration is then separated and consumed as soup.

There is a tremendous increase in the production and consumption of instant noodles in Malaysia. These types of noodle product need a medium to standard hard wheat with crude protein between 9-13% and 0.35-0.55% ash content. The raw ingredient for the production of instant noodles is basically wheat, which is wholly imported in Malaysia. Hence, the need to reduce the dependence of utilizing wheat as the main raw material and finding an alternative source in the production of instant noodles needs to be studied.

Sago starch is a valuable source of carbohydrates and is abundantly available in Malaysia, particularly in Sarawak. It can be a potential source of raw material to partially replace or substitute wheat flour. Currently, sago starch is much cheaper than wheat starch (RM600.00 per tonne). Its utilization will reduce the production
costs and as a result, investors may develop an interest to set up an instant noodle factory based on sago starch. In addition, it would be able to reduce the country’s dependence on imported wheat.

Some of the requirements of instant noodles include colour, dough strength and protein content. Noodle colour is usually bright, light yellow. The noodle dough must be moderately strong to pass through the noodle machine intact. The protein content of the flour used in the production of instant noodles is also important because it will influence the degree of the oil uptake during frying and the texture of the cooked noodle. Another requirement is the starch quality of the raw material used. The texture of the noodles is highly dependent on the gelatinized starch. Therefore, the inherent pasting viscosity is very important. A high starch paste viscosity is associated with noodle having the best eating quality.

Moss (1987) mentioned that the choice of flour might be related to the desired cooking volume of the resulting noodles. Softer flour with a lower protein content is usually preferred to produce noodles that are bright but soft in eating quality. This may be due to the rapid gelatinization of the starch and this quality is extremely important in the manufacture of instant cup noodles. The colour, texture and taste of the instant noodles may vary with the different raw materials substituted depending on the physical and chemical properties of the flours and starches used. Currently, instant noodle produced in Malaysia is made up wholly of wheat flour. In this study, sago starch is substituted for wheat flour in the preparation of instant noodles.
The substitution of sago starch in the production of instant noodles may bring about changes to the physical characteristics of the product. The characteristics of sago starch are much different from wheat that they may affect the instant noodle's quality. The addition of carbonates, gums and modified starch as firming agents to the instant noodles that substituted with sago starch will be studied. Modified potato starch has been used in the production of instant noodles as it helps the noodle to rehydrate evenly from surface to center so the texture remains uniform (Labell, 1990). In this study, two types of modified sago starches were used during the preparation of noodles. These modified starches were prepared for food applications.

The objectives of the study were:

1. To determine the optimum level of substitution of wheat flour with sago starch in the production of instant noodles
2. To compare the effect of different types of firming agents on the textural characteristics of wheat-sago noodles
3. To study the feasibility of using modified sago starches in the production of instant noodles